ﻻ يوجد ملخص باللغة العربية
Second order perturbation theory and a Lipkin-Nogami scheme combined with an exact Monte Carlo projection after variation are applied to compute the ground-state energy of $6le Nle 210$ electron-hole pairs confined in a parabolic two-dimensional quantum dot. The energy shows nice scaling properties as N or the confinement strength is varied. A crossover from the high-density electron-hole phase to the BCS excitonic phase is found at a density which is roughly four times the close-packing density of excitons.
We investigate the addition spectrum of a graphene quantum dot in the vicinity of the electron-hole crossover as a function of perpendicular magnetic field. Coulomb blockade resonances of the 50 nm wide dot are visible at all gate voltages across the
We report growth and characterization of a coupled quantum dot structure that utilizes nanowire templates for selective epitaxy of radial heterostructures. The starting point is a zinc blende InAs nanowire with thin segments of wurtzite structure. Th
This review article describes theoretical and experimental advances in using quantum dots as a system for studying impurity quantum phase transitions and the non-Fermi liquid behavior at the quantum critical point.
Transmission phase alpha measurements of many-electron quantum dots (small mean level spacing delta) revealed universal phase lapses by pi between consecutive resonances. In contrast, for dots with only a few electrons (large delta), the appearance o
We theoretically investigate correlated electron-hole states in vertically coupled quantum dots. Employing a prototypical double-dot confinement and a configuration-interaction description for the electron-hole states, it is shown that the few-partic