ترغب بنشر مسار تعليمي؟ اضغط هنا

The O(n) loop model on the 3-12 lattice

297   0   0.0 ( 0 )
 نشر من قبل Murray. Batchelor
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.T. Batchelor




اسأل ChatGPT حول البحث

The partition function of the O(n) loop model on the honeycomb lattice is mapped to that of the O(n) loop model on the 3-12 lattice. Both models share the same operator content and thus critical exponents. The critical points are related via a simple transformation of variables. When n=0 this gives the recently found exact value $mu = 1.711 041...$ for the connective constant of self-avoiding walks on the 3-12 lattice. The exact critical points are recovered for the Ising model on the 3-12 lattice and the dual asanoha lattice at n=1.



قيم البحث

اقرأ أيضاً

Using Environmentally Friendly Renormalization, we present an analytic calculation of the series for the renormalization constants that describe the equation of state for the $O(N)$ model in the whole critical region. The solution of the beta-functio n equation, for the running coupling to order two loops, exhibits crossover between the strong coupling fixed point, associated with the Goldstone modes, and the Wilson-Fisher fixed point. The Wilson functions $gamma_lambda$, $gamma_phi$ and $gamma_{phi^2}$, and thus the effective critical exponents associated with renormalization of the transverse vertex functions, also exhibit non-trivial crossover between these fixed points.
The quantum O(N) model in the infinite $N$ limit is a paradigm for symmetry-breaking. Qualitatively, its phase diagram is an excellent guide to the equilibrium physics for more realistic values of $N$ in varying spatial dimensions ($d>1$). Here we in vestigate the physics of this model out of equilibrium, specifically its response to global quenches starting in the disordered phase. If the model were to exhibit equilibration, the late time state could be inferred from the finite temperature phase diagram. In the infinite $N$ limit, we show that not only does the model not lead to equilibration on account of an infinite number of conserved quantities, it also does emph{not} relax to a generalized Gibbs ensemble consistent with these conserved quantities. Nevertheless, we emph{still} find that the late time states following quenches bear strong signatures of the equilibrium phase diagram. Notably, we find that the model exhibits coarsening to a non-equilibrium critical state only in dimensions $d>2$, that is, if the equilibrium phase diagram contains an ordered phase at non-zero temperatures.
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interac tions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has non-trivial correlations and is synchronized with the drive. The O(N) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.
A relation between O$(n)$ models and Ising models has been recently conjectured [L. Casetti, C. Nardini, and R. Nerattini, Phys. Rev. Lett. 106, 057208 (2011)]. Such a relation, inspired by an energy landscape analysis, implies that the microcanonica l density of states of an O$(n)$ spin model on a lattice can be effectively approximated in terms of the density of states of an Ising model defined on the same lattice and with the same interactions. Were this relation exact, it would imply that the critical energy densities of all the O$(n)$ models (i.e., the average values per spin of the O$(n)$ Hamiltonians at their respective critical temperatures) should be equal to that of the corresponding Ising model; it is therefore worth investigating how different the critical energies are and how this difference depends on $n$. We compare the critical energy densities of O$(n)$ models in three dimensions in some specific cases: the O$(1)$ or Ising model, the O$(2)$ or $XY$ model, the O$(3)$ or Heisenberg model, the O$(4)$ model and the O$(infty)$ or spherical model, all defined on regular cubic lattices and with ferromagnetic nearest-neighbor interactions. The values of the critical energy density in the $n=2$, $n=3$, and $n=4$ cases are derived through a finite-size scaling analysis of data produced by means of Monte Carlo simulations on lattices with up to $128^3$ sites. For $n=2$ and $n=3$ the accuracy of previously known results has been improved. We also derive an interpolation formula showing that the difference between the critical energy densities of O$(n)$ models and that of the Ising model is smaller than $1%$ if $n<8$ and never exceeds $3%$ for any $n$.
137 - Jerome Dubail 2009
The effect of surface exchange anisotropies is known to play a important role in magnetic critical and multicritical behavior at surfaces. We give an exact analysis of this problem in d=2 for the O(n) model by using Coulomb gas, conformal invariance and integrability techniques. We obtain the full set of critical exponents at the anisotropic special transition--where the symmetry on the boundary is broken down to O(n_1)xO(n-n_1)--as a function of n_1. We also obtain the full phase diagram and crossover exponents. Crucial in this analysis is a new solution of the boundary Yang-Baxter equations for loop models. The appearance of the generalization of Schramm-Loewner Evolution SLE_{kappa,rho} is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا