ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Solution of a Boundary Value Problem in Semiconductor Kinetic Theory

215   0   0.0 ( 0 )
 نشر من قبل Christoph Dalitz
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An explicit solution of the stationary one dimensional half-space boundary value problem for the linear Boltzmann equation is presented in the presence of an arbitrarily high constant external field. The collision kernel is assumed to be separable, which is also known as relaxation time approximation; the relaxation time may depend on the electron velocity. Our method consists in a transformation of the half-space problem into a nonnormal singular integral equation, which has an explicit solution.



قيم البحث

اقرأ أيضاً

290 - F. Y. Wu , Wen-Jer Tzeng , 2010
We solve the monomer-dimer problem on a non-bipartite lattice, the simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the non-bipartite nature of the lattice, the well-known method of a Temperley bijection of solving single-monomer problems cannot be used. In this paper we derive the solution by mapping the problem onto one on close-packed dimers on a related lattice. Finite-size analysis of the solution is carried out. We find from asymptotic expansions of the free energy that the central charge in the logarithmic conformal field theory assumes the value $c=-2$.
For a stationary and axisymmetric spacetime, the vacuum Einstein field equations reduce to a single nonlinear PDE in two dimensions called the Ernst equation. By solving this equation with a {it Dirichlet} boundary condition imposed along the disk, N eugebauer and Meinel in the 1990s famously derived an explicit expression for the spacetime metric corresponding to the Bardeen-Wagoner uniformly rotating disk of dust. In this paper, we consider a similar boundary value problem for a rotating disk in which a {it Neumann} boundary condition is imposed along the disk instead of a Dirichlet condition. Using the integrable structure of the Ernst equation, we are able to reduce the problem to a Riemann-Hilbert problem on a genus one Riemann surface. By solving this Riemann-Hilbert problem in terms of theta functions, we obtain an explicit expression for the Ernst potential. Finally, a Riemann surface degeneration argument leads to an expression for the associated spacetime metric.
We study mode-locking in disordered media as a boundary-value problem. Focusing on the simplest class of mode-locking models which consists of a single driven overdamped degree-of-freedom, we develop an analytical method to obtain the shape of the Ar nold tongues in the regime of low ac-driving amplitude or high ac-driving frequency. The method is exact for a scalloped pinning potential and easily adapted to other pinning potentials. It is complementary to the analysis based on the well-known Shapiros argument that holds in the perturbative regime of large driving amplitudes or low driving frequency, where the effect of pinning is weak.
209 - D. Karevski , V. Popkov , 2012
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where the matrices satisfy a {it quadratic algebra}. This algebra turns out to be related to the quantum algebra $U_q[SU(2)]$. Coherent state techniques are introduced for the exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad terms that correspond to two different completely polarized boundary states. We show that this boundary twist leads to non-vanishing stationary currents of all spin components. Our results suggest that the matrix product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad boundary terms.
We present an analytical solution of the Ginzburgs $Psi$-theory for the behavior of the Casimir force in a film of $^4$He in equilibrium with its vapor near the superfluid transition point, and we revisit the corresponding experiments in light of our findings. We find reasonably good agreement between the $Psi$-theory predictions and the experimental data. Our calculated force is attractive, and the largest absolute value of the scaling function is $1.848$, while experiment yields $1.30$. The position of the extremum is predicted to be at $x=(L/xi_0)(T/T_lambda-1)^{1/ u}=pi$, while experiment is consistent with $x=3.8$. Here $L$ is the thickness of the film, $T_lambda$ is the bulk critical temperature and $xi_0$ is the correlation length amplitude of the system for $T>T_lambda$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا