ﻻ يوجد ملخص باللغة العربية
We have observed the metal-insulator transition in the strongly correlated insulator FeSi with the chemical substitution of Al at the Si site. The magnetic susceptibility, heat capacity, and field dependent conductivity are measured for Al concentrations ranging from 0 to 0.08. For concentrations greater than 0.01 we find metallic properties quantitatively similar to those measured in Si:P with the exception of a greatly enhanced quasiparticle mass. Below 2 K the temperature and field dependent conductivity can be completely described by the theory of disordered Fermi Liquids.
We report the existence of the charge density wave (CDW) in the ground state of 1D Kondo lattice model at the filling of n=0.75 in the weak coupling region. The CDW is driven by the effective Coulomb repulsion mediated by the localized spins. Based o
We study one-dimensional Kondo Lattices (KL) which consist of itinerant electrons interacting with Kondo impurities (KI) - localized quantum magnetic moments. We focus on KL with isotropic exchange interaction between electrons and KI and with a high
Detailed understanding of the role of single dopant atoms in host materials has been crucial for the continuing miniaturization in the semiconductor industry as local charging and trapping of electrons can completely change the behaviour of a device.
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle
We have studied the temperature dependence of the conductivity of a silicon MOSFET containing sodium ions in the oxide above 20 K. We find the impurity band resulting from the presence of charges at the silicon-oxide interface is split into a lower a