ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio shallow acceptor levels in gallium nitride

68   0   0.0 ( 0 )
 نشر من قبل Vincenzo Fiorentini
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Impurity levels and formation energies of acceptors in wurtzite GaN are predicted ab initio. Be_Ga is found to be the shallow (thermal ionization energy $sim$ 0.06 eV); $Mg_{Ga}$ and $Zn_{Ga}$ are mid-deep acceptors (0.23 eV and 0.33 eV respectively); $Ca_{Ga}$ and $Cd_{Ga}$ are deep acceptors ($sim$0.65 eV); $Si_N$ is a midgap trap with high formation energy; finally, contrary to recent claims, $C_N$ is a deep acceptor (0.65 eV). Interstitials and heteroantisites are energetically not competitive with substitutional incorporation.



قيم البحث

اقرأ أيضاً

We present an ab initio study of dopant-dopant interactions in beryllium-doped InGaAs. We consider defect formation energies of various interstitial and substitutional defects and their combinations. We find that all substitutional-substitutional int eractions can be neglected. On the other hand, interactions involving an interstitial defect are significant. Specially, interstitial Be is stabilized by about 0.9/1.0 eV in the presence of one/two BeGa substitutionals. Ga interstitial is also substantially stabilized by Be interstitials. Two Be interstitials can form a metastable Be-Be-Ga complex with a dissociation energy of 0.26 eV/Be. Therefore, interstitial defects and defect-defect interactions should be considered in accurate models of Be doped InGaAs. We suggest that In and Ga should be treated as separate atoms and not lumped into a single effective group III element, as has been done before. We identified dopant-centred states which indicate the presence of other charge states at finite temperatures, specifically, the presence of Beint+1 (as opposed to Beint+2 at 0K).
We introduced a method to obtain the continuum description of the elastic properties of mono- layer h-BN through ab initio density functional theory. This thermodynamically rigorous contin- uum description of the elastic response is formulated by exp anding the elastic strain energy density in a Taylor series in strain truncated after the fifth-order term. we obtained a total of fourteen nonzero independent elastic constants for the up to tenth-order tensor. We predicted the pressure dependent second-order elastic moduli. This continuum formulation is suitable for incorporation into the finite element method.
A roadblock in utilizing InGaAs for scaled-down electronic devices is its anomalous dopant diffusion behavior; specifically, existing models are not able to explain available experimental data on beryllium diffusion consistently. In this paper, we pr opose a comprehensive model, taking self-interstitial migration and Be interaction with Ga and In into account. Density functional theory (DFT) calculations are first used to calculate the energy parameters and charge states of possible diffusion mechanisms. Based on the DFT results, continuum modeling and kinetic Monte Carlo simulations are then performed. The model is able to reproduce experimental Be concentration profiles. Our results suggest that the Frank-Turnbull mechanism is not likely, instead, kick-out reactions are the dominant mechanism. Due to a large reaction energy difference, the Ga interstitial and the In interstitial play different roles in the kick-out reactions, contrary to what is usually assumed. The DFT calculations also suggest that the influence of As on Be diffusion may not be negligible.
In this work, we report our results on the geometric and electronic properties of hybrid graphite-like structure made up of silicene and boron nitride (BN) layers. We predict from our calculations that this hybrid bulk system, with alternate layers o f honeycomb silicene and BN, possesses physical properties similar to those of bulk graphite. We observe that there exists a weak van der Waals interaction between the layers of this hybrid system in contrast to the strong inter-layer covalent bonds present in multi-layers of silicene. Furthermore, our results for the electronic band structure and the density of states show that it is a semi-metal and the dispersion around the Fermi level (E_F) is parabolic in nature and thus the charge carriers in this system behave as textit{Nearly-Free Particle-Like}. These results indicate that the electronic properties of the hybrid bulk system resemble closely those of bulk graphite. Around E_F the electronic band structures have contributions only from silicene layers and the BN layer act only as a buffer layer in this hybrid system since it does not contribute to the electronic properties near E_F. In case of bi-layers of silicene with a single BN layer kept in between, we observe a linear dispersion around E_F similar to that of graphene. However, the characteristic linear dispersion become parabola-like when the system is subjected to a compression along the transverse direction. Our present calculations show that the hybrid system based on silicon and BN can be a possible candidate for two dimensional layered system akin to graphite and multi-layers of graphene.
We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this functio n breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers generation, the speed of electron-phonon relaxation, rates of inter-band recombination and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy tail covers largely the conduction band. The shape of the high-energy tail strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi tail is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can affect essentially the charge transport in the irradiated and highly doped semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا