ترغب بنشر مسار تعليمي؟ اضغط هنا

Tc suppression and resistivity in cuprates with out of plane defects

213   0   0.0 ( 0 )
 نشر من قبل Siegfried Graser
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments introducing controlled disorder into optimally doped cuprate superconductors by both electron irradiation and chemical substitution have found unusual behavior in the rate of suppression of the critical temperature Tc vs. increase in residual resistivity. We show here that the unexpected discovery that the rate of Tc suppression vs. resistivity is stronger for out-of-plane than for in-plane impurities may be explained by consistent calculation of both Tc and resistivity if the potential scattering is assumed to be nearly forward in nature. For realistic models of impurity potentials, we further show that significant deviations from the universal Abrikosov-Gorkov Tc suppression behavior may be expected for out of plane impurities.



قيم البحث

اقرأ أيضاً

364 - R. Arouca , E. C. Marino 2020
We show that the resistivity in each phase of the High-Tc cuprates is a special case of a general expression derived from the Kubo formula. We obtain, in particular, the T-linear behavior in the strange metal (SM) and upper pseudogap (PG) phases, the pure $T^2$, Fermi liquid (FL) behavior observed in the strongly overdoped regime as well as the $T^{1+delta}$ behavior that interpolates both in the crossover. We calculate the coefficients: a) of $T$ in the linear regime and show that it is proportional to the PG temperature $T^*(x)$; b) of the $T^2$-term in the FL regime, without adjusting any parameter; and c) of the $T^{1.6}$ term in the crossover regime, all in excellent agreement with the experimental data. From our model, we are able to infer that the resistivity in cuprates is caused by the scattering of holes by excitons, which naturally form as holes are doped into the electron background.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th e temperature Tc above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* allow us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
We have studied the doping dependence of the in-plane and out-of-plane superfluid density, rho^s(0), of two monolayer high-Tc superconductors, HgBa_2CuO_{4+delta} and La_{2-x}Sr_xCuO_4, using the low frequency ac-susceptibility and the muon spin rela xation techniques. For both superconductors, rho^s(0) increases rapidly with doping in the under- and optimally doped regime and becomes nearly doping independent above a critical doping, p_c = 0.20.
A linear temperature dependence of the electrical resistivity as T -> 0 is the hallmark of quantum criticality in heavy-fermion metals and the archetypal normal-state property of high-Tc superconductors, yet in both cases it remains unexplained. We r eport a linear resistivity on the border of spin-density-wave order in the organic superconductor (TMTSF)2X (X = PF6, ClO4), whose strength scales with the superconducting temperature Tc. This scaling, also present in the pnictide superconductors, reveals an intimate connection between linear-T scattering and pairing, shown by renormalization group theory to arise from antiferromagnetic fluctuations, enhanced by the interference of superconducting correlations. Our results suggest that linear resistivity in general may be a consequence of such interference and pairing in overdoped high-Tc cuprates is driven by antiferromagnetic fluctuations, as in organic and pnictide superconductors.
The perfectly linear temperature dependence of the electrical resistivity observed as $T rightarrow$ 0 in a variety of metals close to a quantum critical point is a major puzzle of condensed matter physics . Here we show that $T$-linear resistivity a s $T rightarrow$ 0 is a generic property of cuprates, associated with a universal scattering rate. We measured the low-temperature resistivity of the bi-layer cuprate Bi2212 and found that it exhibits a $T$-linear dependence with the same slope as in the single-layer cuprates Bi2201, Nd-LSCO and LSCO, despite their very different Fermi surfaces and structural, superconducting and magnetic properties. We then show that the $T$-linear coefficient (per CuO$_2$ plane), $A_1$, is given by the universal relation $A_1 T_F = h / 2e^2$, where $e$ is the electron charge, $h$ is the Planck constant and $T_F$ is the Fermi temperature. This relation, obtained by assuming that the scattering rate 1 / $tau$ of charge carriers reaches the Planckian limit whereby $hbar / tau = k_B T$, works not only for hole-doped cuprates but also for electron-doped cuprates despite the different nature of their quantum critical point and strength of their electron correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا