ﻻ يوجد ملخص باللغة العربية
We report a study of the mode-coupling theory (MCT) glass transition line for the Girifalco model of C60 fullerene. The equilibrium static structure factor of the model, the only required input for the MCT calculations, is provided by molecular dynamics simulations. The glass transition line develops inside the metastable liquid-solid coexistence region and extends down in temperature, terminating on the liquid sideof the metastable portion of the liquid-vapor binodal. The vitrification locus does not show re-entrant behavior. A comparison with previous computer simulation estimates of the location of the glass line suggests that the theory accurately reproduces the shape of the arrest line in the density-temperature plane. The theoretical HNC and MHNC structure factors (and consequently the corresponding MCT glass line) compare well with the numerical counterpart. These evidences confirm the conclusion drawn in previous works about the existence of a glassy phase for the fullerene model at issue.
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the s
We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of
Glass transition process gets affected in ultrathin films having thickness comparable to the size of the molecules. We observe systematic broadening of glass transition temperature (Tg) as the thickness of the polymer film reduces below the radius of
The mean-square displacement (MSD) was measured by neutron scattering at various temperatures and pressures for a number of molecular glass-forming liquids. The MSD is invariant along the glass-transition line at the pressure studied, thus establishi
The glass transition in hydrogen-bonded glass formers differs from the glass transition in other glass formers. The Eshelby rearrangements of the highly viscous flow are superimposed by strongly asymmetric hydrogen bond rupture processes, responsible