ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoemission study of TiO2/VO2 interfaces

72   0   0.0 ( 0 )
 نشر من قبل Masaru Takizawa
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured photoemission spectra of two kinds of TiO$_2$-capped VO$_2$ thin films, namely, that with rutile-type TiO$_2$ (r-TiO$_2$/VO$_2$) and that with amorphous TiO$_2$ (a-TiO$_2$/VO$_2$) capping layers. Below the Metal-insulator transition temperature of the VO$_2$ thin films, $sim 300$ K, metallic states were not observed for the interfaces with TiO$_2$, in contrast with the interfaces between the band insulator SrTiO$_3$ and the Mott insulator LaTiO$_3$ in spite of the fact that both TiO$_2$ and SrTiO$_3$ are band insulators with $d^0$ electronic configurations and both VO$_2$ and LaTiO$_3$ are Mott insulators with $d^1$ electronic configurations. We discuss possible origins of this difference and suggest the importance of the polarity discontinuity of the interfaces. Stronger incoherent part was observed in r-TiO$_2$/VO$_2$ than in a-TiO$_2$/VO$_2$, suggesting Ti-V atomic diffusion due to the higher deposition temperature for r-TiO$_2$/VO$_2$.



قيم البحث

اقرأ أيضاً

Spinodal decomposition is a ubiquitous phenomenon leading to phase separation from a uniform solution. We show that a spinodal decomposition occurs in a unique combination of two rutile compounds of TiO2 and VO2, which are chemically and physically d istinguished from each other: TiO2 is a wide-gap insulator with photo catalytic activities and VO2 is assumed to be a strongly correlated electron system which exhibits a dramatic metal-insulator transition at 342 K. The spinodal decomposition takes place below 830 K at a critical composition of 34 mol% Ti, generates a unidirectional composition modulation along the c axis with a wavelength of approximately 6 nm, and finally results in the formation of self-assembled lamella structures made up of Ti-rich and V-rich layers stacked alternately with 30-50 nm wavelengths. A metal-insulator transition is not observed in quenched solid solutions with intermediate compositions but emerges in the thin V-rich layers as the result of phase separation. Interestingly, the metal-insulator transition remains as sharp as in pure VO2 even in such thin layers and takes place at significantly reduced temperatures of 310-340 K, which is probably due to a large misfit strain induced by lattice matching at the coherent interface.
The chemical states of the ZnGeP$_{2}$:Mn interface, which shows ferromagnetism above room-temperature, has been studied by photoemission spectroscopy. Mn deposition on the ZnGeP$_2$ substrate heated to 400$^{circ}$C induced Mn substitution for Zn an d then the formation of metallic Mn-Ge-P compounds. Depth profile studies have shown that Mn 3$d$ electrons changed their character from itinerant to localized along the depth, and in the deep region, dilute divalent Mn species ($textless$ 5 % Mn) was observed with a coexisting metallic Fermi edge of non-Mn 3$d$ character. The possibility of hole doping through Mn substitution for Ge and/or Zn vacancy is discussed.
The optical/infrared properties of films of vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) have been investigated via ellipsometry and near-normal incidence reflectance measurements from far infrared to ultraviolet frequencies. Significant ch anges occur in the optical conductivity of both VO2 and V2O3 across the metal-insulator transitions at least up to (and possibly beyond) 6 eV. We argue that such changes in optical conductivity and electronic spectral weight over a broad frequency range is evidence of the important role of electronic correlations to the metal-insulator transitions in both of these vanadium oxides. We observe a sharp optical transition with possible final state (exciton) effects in the insulating phase of VO2. This sharp optical transition occurs between narrow a1g bands that arise from the quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of the charge carriers compared to band theory values, with paramagnetic metallic V2O3 showing evidence of stronger correlations compared to rutile metallic VO2.
We report on the observation of stable electrical oscillation in Pt/VO2 bilayer strips, in which the Pt overlayer serves the dual purposes of heating up the VO2 and weakening the electric field in the VO2 layer. Systematic measurements in an ultrahig h vacuum nanoprobe system show that the oscillation frequency increases with the bias current and/or with decreasing device dimension. In contrast to most VO2-based oscillators reported to date, which are electrically triggered, current-induced Joule heating in the Pt overlayer is found to play a dominant role in the generation of oscillation in Pt/VO2 bilayers. A simple model involving thermally triggered transition of VO2 on a heat sink is able to account for the experimental observations. The results in this work provide an alternative view of the triggering mechanism in VO2-based oscillators.
We studied the electronic band structure of pulsed laser deposition (PLD) grown (111)-oriented SrRuO$_3$ (SRO) thin films using textit{in situ} angle-resolved photoemission spectroscopy (ARPES) technique. We observed previously unreported, light band s with a renormalized quasiparticle effective mass of about 0.8$m_{e}$. The electron-phonon coupling underlying this mass renormalization yields a characteristic kink in the band dispersion. The self-energy analysis using the Einstein model suggests five optical phonon modes covering an energy range 44 to 90 meV contribute to the coupling. Besides, we show that the quasiparticle spectral intensity at the Fermi level is considerably suppressed, and two prominent peaks appear in the valance band spectrum at binding energies of 0.8 eV and 1.4 eV, respectively. We discuss the possible implications of these observations. Overall, our work demonstrates that high-quality thin films of oxides with large spin-orbit coupling can be grown along the polar (111) orientation by the PLD technique, enabling textit{in situ} electronic band structure study. This could allow for characterizing the thickness-dependent evolution of band structure of (111) heterostructures$-$a prerequisite for exploring possible topological quantum states in the bilayer limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا