ﻻ يوجد ملخص باللغة العربية
We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for $Rsim d$ the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for $Rgg d$, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility $4pichi$ becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer.
Motivated by recent advances in the fabrication of Josephson junctions in which the weak link is made of a low-dimensional non-superconducting material, we present here a systematic theoretical study of the local density of states (LDOS) in a clean 2
We analyse the possibility of the appearance of spontaneous currents in proximated superconducting/normal metal (S/N) heterostructure when Cooper pairs penetrate into the normal metal from the superconductor. In particular, we calculate the free ener
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An
In s-wave superconductors the Cooper pair wave function is isotropic in momentum space. This property may also be expected for Cooper pairs entering a normal metal from a superconductor due to the proximity effect. We show, however, that such a deduc
Harnessing the properties of vortices in superconductors is crucial for fundamental science and technological applications; thus, it has been an ongoing goal to locally probe and control vortices. Here, we use a scanning probe technique that enables