ﻻ يوجد ملخص باللغة العربية
Starting from a microscopic model of randomly cross-linked particles with quenched disorder, we calculate the Laudau-Wilson free energy S for arbitrary cross-link densities. Considering pure shear deformations, S takes the form of the elastic energy of an isotropic amorphous solid state, from which the shear modulus can be identified. It is found to be an universal quantity, not depending on any microscopic length-scales of the model.
Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching domi
Assemblies of purely repulsive and frictionless particles, such as emulsions or hard spheres, display very curious properties near their jamming transition, which occurs at the random close packing for mono-disperse spheres. Although such systems do
We have made experimental observations of the force networks within a two-dimensional granular silo similar to the classical system of Janssen. Models like that of Janssen predict that pressure within a silo saturates with depth as the result of vert
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are con
We suggest a simple model for reversible cross-links, binding and unbinding to/from a network of semiflexible polymers. The resulting frequency dependent response of the network to an applied shear is calculated via Brownian dynamics simulations. It