ﻻ يوجد ملخص باللغة العربية
We consider the initialization of the spin-state of a single electron trapped in a self-assembled quantum dot via optical pumping of a trion level. We show that with a magnetic field applied perpendicular to the growth direction of the dot, a near-unity fidelity can be obtained in a time equal to a few times the inverse of the spin-conserving trion relaxation rate. This method is several orders-of-magnitude faster than with the field aligned parallel, since this configuration must rely on a slow hole spin-flip mechanism. This increase in speed does result in a limit on the maximum obtainable fidelity, but we show that for InAs dots, the error is very small.
We demonstrate fast initialization of a single hole spin captured in an InGaAs quantum dot with a fidelity F>99% by applying a magnetic field parallel to the growth direction. We show that the fidelity of the hole spin, prepared by ionization of a ph
We propose a technique to initialize an electron spin in a semiconductor quantum dot with a single short optical pulse. It relies on the fast depletion of the initial spin state followed by a preferential, Purcell-accelerated desexcitation towards th
The preparation of a coherent heavy-hole spin via ionization of a spin-polarized electron-hole pair in an InAs/GaAs quantum dot in a Voigt geometry magnetic field is investigated. For a dot with a 17 ueV bright-exciton fine-structure splitting, the f
We describe theoretically the resonant optical excitation of a trion with circularly polarized light and discuss how this trion permits the read-out of a single electron spin through a recycling transition. Optical pumping through combination of circ
We study the loading of electrons into a quantum dot with dynamically controlled tunnel barriers. We introduce a method to measure tunneling rates for individual discrete states and to identify their relaxation paths. Exponential selectivity of the t