ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration

64   0   0.0 ( 0 )
 نشر من قبل Clive Emary
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the initialization of the spin-state of a single electron trapped in a self-assembled quantum dot via optical pumping of a trion level. We show that with a magnetic field applied perpendicular to the growth direction of the dot, a near-unity fidelity can be obtained in a time equal to a few times the inverse of the spin-conserving trion relaxation rate. This method is several orders-of-magnitude faster than with the field aligned parallel, since this configuration must rely on a slow hole spin-flip mechanism. This increase in speed does result in a limit on the maximum obtainable fidelity, but we show that for InAs dots, the error is very small.



قيم البحث

اقرأ أيضاً

We demonstrate fast initialization of a single hole spin captured in an InGaAs quantum dot with a fidelity F>99% by applying a magnetic field parallel to the growth direction. We show that the fidelity of the hole spin, prepared by ionization of a ph oto-generated electron-hole pair, is limited by the precession of the exciton spin due to the anisotropic exchange interaction.
We propose a technique to initialize an electron spin in a semiconductor quantum dot with a single short optical pulse. It relies on the fast depletion of the initial spin state followed by a preferential, Purcell-accelerated desexcitation towards th e desired state thanks to a micropillar cavity. We theoretically discuss the limits on initialization rate and fidelity, and derive the pulse area for optimal initialization. We show that spin initialization is possible using a single optical pulse down to a few tens of picoseconds wide.
The preparation of a coherent heavy-hole spin via ionization of a spin-polarized electron-hole pair in an InAs/GaAs quantum dot in a Voigt geometry magnetic field is investigated. For a dot with a 17 ueV bright-exciton fine-structure splitting, the f idelity of the spin preparation is limited to 0.75, with optimum preparation occurring when the effective fine-structure of the bright-exciton matches the in-plane hole Zeeman energy. In principle, higher fidelities can be achieved by minimizing the bright-exciton fine-structure splitting.
156 - A. Shabaev 2003
We describe theoretically the resonant optical excitation of a trion with circularly polarized light and discuss how this trion permits the read-out of a single electron spin through a recycling transition. Optical pumping through combination of circ ularly polarized optical $pi$--pulses with permanent or $pi$-- pulsed transverse magnetic fields suggests feasible protocols for spin initialization.
We study the loading of electrons into a quantum dot with dynamically controlled tunnel barriers. We introduce a method to measure tunneling rates for individual discrete states and to identify their relaxation paths. Exponential selectivity of the t unnel coupling enables loading into specific quantum dot states by tuning independently energy and rates. While for the single-electron case orbital relaxation leads to fast transition into the ground state, for electron pairs triplet-to-singlet relaxation is suppressed by long spin-flip times. This enables the fast gate-controlled initialization of either a singlet or a triplet electron pair state in a quantum dot with broad potential applications in quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا