ﻻ يوجد ملخص باللغة العربية
The competition between spin glass, ferromagnetism and Kondo effect is analysed here in a Kondo lattice model with an inter-site random coupling $J_{ij}$ between the localized magnetic moments given by a generalization of the Mattis model which represents an interpolation between ferromagnetism and a highly disordered spin glass. Functional integral techniques with Grassmann fields have been used to obtain the partition function. The static approximation and the replica symmetric ansatz have also been used. The solution of the problem is presented as a phase diagram giving $T/{J}$ {it versus} $J_K/J$ where $T$ is the temperature, $J_{K}$ and ${J}$ are the strengths of the intrasite Kondo and the intersite random couplings, respectively. If $J_K/{J}$ is small, when temperature is decreased, there is a second order transition from a paramagnetic to a spin glass phase. For lower $T/{J}$, a first order transition appears between the spin glass phase and a region where there are Mattis states which are thermodynamically equivalent to the ferromagnetism. For very low ${T/{J}}$, the Mattis states become stable. On the other hand, it is found as solution a Kondo state for large $J_{K}/{J}$ values. These results can improve the theoretical description of the well known experimental phase diagram of $CeNi_{1-x}Cu_{x}$.
The competition among spin glass (SG), ferromagnetism and Kondo effect has been analysed in a Kondo lattice model where the inter-site coupling $J_{ij}$ between the localized magnetic moments is given by a generalized Mattis model cite{Mattis} which
The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic (AF) short-range couplings and long-range intercluster disordered interactions.
The physics of disordered alloys, such as typically the well known case of CeNi1-xCux alloys, showing an interplay among the Kondo effect, the spin glass state and a magnetic order, has been studied firstly within an average description like in the S
Recently measurements on various spin-1/2 quantum magnets such as H$_3$LiIr$_2$O$_6$, LiZn$_2$Mo$_3$O$_8$, ZnCu$_3$(OH)$_6$Cl$_2$ and 1T-TaS$_2$ -- all described by magnetic frustration and quenched disorder but with no other common relation -- never
We study spin transport in a Hubbard chain with strong, random, on--site potential and with spin--dependent hopping integrals, $t_{sigma}$. For the the SU(2) symmetric case, $t_{uparrow} =t_{downarrow}$, such model exhibits only partial many-body loc