ﻻ يوجد ملخص باللغة العربية
We introduce a formalism for calculating dynamic response functions using experimental single particle Greens functions derived from angle resolved photoemission spectroscopy (ARPES). As an illustration of this procedure we estimate the dynamic spin response of the cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. We find good agreement with superconducting state neutron data, in particular the $(pi,pi)$ resonance with its unusual `reversed magnon dispersion. We anticipate our formalism will also be of useful in interpreting results from other spectroscopies, such as optical and Raman responses.
Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temper
Angle resolved photoemission spectroscopy (ARPES) provides a detailed view of the renormalized band structure and, consequently, is a key to the self-energy and the single-particle Greens function. Here we summarize the ARPES data accumulated over th
Both electronic Raman scattering (ERS) and angle-resolved photoemission spectra (ARPES) revealed two energy scales for the gap in different momentum spaces in the cuprates. However, the interpretations were different, and the gap values were also dif
High-resolution laser-based angle-resolved photoemission measurements have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212) and Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ (Bi2201) superconductors. Unexpected hybridization between the main ba