ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatic attraction between cationic-anionic assemblies with surface compositional heterogeneities

117   0   0.0 ( 0 )
 نشر من قبل Yuri Velichko
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrostatics plays a key role in biomolecular assembly. Oppositely charged biomolecules, for instance, can co-assembled into functional units, such as DNA and histone proteins into nucleosomes and actin-binding protein complexes into cytoskeleton components, at appropriate ionic conditions. These cationic-anionic co-assemblies often have surface charge heterogeneities that result from the delicate balance between electrostatics and packing constraints. Despite their importance, the precise role of surface charge heterogeneities in the organization of cationic-anionic co-assemblies is not well understood. We show here that co-assemblies with charge heterogeneities strongly interact through polarization of the domains. We find that this leads to symmetry breaking, which is important for functional capabilities, and structural changes, which is crucial in the organization of co-assemblies. We determine the range and strength of the attraction as a function of the competition between the steric and hydrophobic constraints and electrostatic interactions.



قيم البحث

اقرأ أيضاً

Charged pattern formation on the surfaces of self--assembled cylindrical micelles formed from oppositely charged heterogeneous molecules such as cationic and anionic peptide amphiphiles is investigated. The net incompatibility $chi$ among different c omponents results in the formation of segregated domains, whose growth is inhibited by electrostatics. The transition to striped phases proceeds through an intermediate structure governed by fluctuations, followed by states with various lamellar orientations, which depend on cylinder radius $R_c$ and $chi$. We analyze the specific heat, susceptibility $S(q^*)$, domain size $Lambda=2pi/q^*$ and morphology as a function of $R_c$ and $chi$.
A binary mixture of oppositely charged components confined to a plane such as cationic and anionic lipid bilayers may exhibit local segregation. The relative strength of the net short range interactions, which favors macroscopic segregation, and the long range electrostatic interactions, which favors mixing, determines the length scale of the finite size or microphase segregation. The free energy of the system can be examined analytically in two separate regimes, when considering small density fluctuations at high temperatures, and when considering the periodic ordering of the system at low temperatures (F. J. Solis and M. Olvera de la Cruz, J. Chem. Phys. 122, 054905 (2000)). A simple Molecular Dynamics simulation of oppositely charged monomers, interacting with a short range Lennard Jones potential and confined to a two dimensional plane, is examined at different strengths of short and long range interactions. The system exhibits well-defined domains that can be characterized by their periodic length-scale as well as the orientational ordering of their interfaces. By adding salt, the ordering of the domains disappears and the mixture macroscopically phase segregates in agreement with analytical predictions.
120 - Kirsten Martens 2011
We present an extensive numerical study of dynamical heterogeneities and their influence on diffusion in an athermal mesoscopic model for actively deformed amorphous solids. At low strain rates the stress dynamics are governed by cooperative regions of plastic events. On the basis of scaling arguments as well as an extensive numerical study of an athermal elasto-plastic model, we show that there is a direct link between the self-diffusion coefficient and the size of cooperative regions at low strain rates. Both depend strongly on rate and on system size. A measure of the mean square displacement of passive tracers in deformed amorphous media thus gives information about the microscopic rheology, such as the geometry of the cooperative regions and their scaling with strain rate and system size.
Some facets of the way sound waves travel through glasses are still unclear. Recent works have shown that in the low-temperature harmonic limit a crucial role in controlling sound damping is played by local elastic heterogeneity. Sound waves propagat ion has been demonstrated to be strongly affected by inhomogeneous mechanical features of the materials, which add to the anharmonic couplings at finite temperatures. We describe the interplay between these two effects by molecular dynamics simulation of a model glass. In particular, we focus on the transverse components of the vibrational excitations in terms of dynamic structure factors, and characterize the temperature dependence of sound attenuation rates in an extended frequency range. We provide a complete picture of all phenomena, in terms encompassing both theory and experiments.
Energy density limitations of layered oxides with different Ni contents, i.e., of the conventional cathode materials in Li-ion batteries, are investigated across the first discharge cycle using advanced spectroscopy and state-of-the-art diffraction. For the first time unambiguous experimental evidence is provided, that redox reactions in NCMs proceed via a reversible oxidation of Ni and a hybridization with O, and not, as widely assumed, via pure cationic or more recently discussed, pure anionic redox processes. Once Ni-O hybrid states are formed, the sites cannot be further oxidized. Instead, irreversible reactions set in which lead to a structural collapse and thus, the lack of ionic Ni limits the reversible capacity. Moreover, the degree of hybridization, which varies with the Ni content, triggers the electronic structure and the operation potential of the cathodes. With an increasing amount of Ni, the covalent character of the materials increases and the potential decreases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا