ﻻ يوجد ملخص باللغة العربية
Galvanic coupling of small-area (three-junction) flux qubits, using shared large Josephson junctions, has been shown to yield appreciable interaction strengths in a flexible design, which does not compromise the junctions intrinsic good coherence properties. For an introduction, I recapitulate an elementary derivation of the coupling strength, which is subsequently generalized to the case of tunable coupling for a current-biased shared junction. While the ability to vary coupling constants by, say, 20% would be useful in experiments, sign-tunability (implying switchability) is highly preferable for several quantum-computing paradigms. This note sketches two ideas: a crossbar design with competing ferro- and antiferromagnetic current-biased tunable couplings, and a mediated one involving an extra loop between the qubits. The latter is a variation on proposals for tunable capacitive coupling of charge qubits, and tunable inductive coupling of large-area flux qubits.
It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUIDs susceptibility on external flux makes it possible to continuously tune the induced coupling fr
We have realized controllable coupling between two three-junction flux qubits by inserting an additional coupler loop between them, containing three Josephson junctions. Two of these are shared with the qubit loops, providing strong qubit--coupler in
We have demonstrated strong antiferromagnetic coupling between two three-junction flux qubits based on a shared Josephson junction, and therefore not limited by the small inductances of the qubit loops. The coupling sign and magnitude were measured b
We have studied decoherence in a system where two Josephson-junction flux qubits share a part of their superconducting loops and are inductively coupled. By tuning the flux bias condition, we control the sensitivities of the energy levels to flux noi
We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonl