The low energy properties of the one-dimensional anyon gas with $delta$-function interaction are discussed in the context of its Bethe ansatz solution. It is found that the anyonic statistical parameter and the dynamical coupling constant induce Haldane exclusion statistics interpolating between bosons and fermions. Moreover, the anyonic parameter may trigger statistics beyond Fermi statistics for which the exclusion parameter $alpha$ is greater than one. The Tonks-Girardeau and the weak coupling limits are discussed in detail. The results support the universal role of $alpha$ in the dispersion relations.