ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium dynamic transition in a kinetic Ising model driven by both deterministic modulation and correlated stochastic noises

54   0   0.0 ( 0 )
 نشر من قبل YuanZhi Shao
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic external field and the stochastic mutually correlated noises simultaneously. A time-dependent Ginzburg-Landau stochastic differential equation, including an oscillating modulation and the correlated multiplicative and additive white noises, was addressed and the numerical solution to the relevant Fokker-Planck equation was presented on the basis of an average-period approach of driven field. The correlated white noises and the deterministic modulation induce a kind of dynamic symmetry-breaking order, analogous to the stochastic resonance in trend, in the kinetic ISS, and the reentrant transition has been observed between the dynamic disorder and order phases when the intensities of multiplicative and additive noises were changing. The dependencies of a dynamic order parameter Q upon the intensities of additive noise A and multiplicative noise M, the correlation lmda between two noises, and the amplitude of applied external field h were investigated quantitatively and visualized vividly. A brief discussion was given to outline the underlying mechanism of the NDPT in a kinetic ISS driven by an external force and correlated noises. Keywords: Ising spin system, nonequilibrium dynamical phase transition, stochastic resonance, correlated noises, TDGL model. PACS: 75.10.Hk, 64.60.Ht, 05.10.Gg, 76.20.+q



قيم البحث

اقرأ أيضاً

We studied the dynamic response and stochastic resonance of kinetic Ising spin system (ISS), subject to the joint external field of weak sinusoidal modulation and stochastic white-noise, through solving the mean-field equation of motion based on Glau ber dynamics. The periodically driven stochastic ISS shows the occurrence of characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) when the frequency and amplitude h0 of driving field, the temperature t of the system and noise intensity D attain a specific accordance in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to zero and unit dynamic order parameter. We also figured out the NDPT boundary surface of the system which separates the dynamic paramagnetic and dynamic ferromagnetic phase in the 3D parameter space of h0~t~D. An intriguing dynamical ferromagnetic phase with an intermediate order parameter at 0.66 was revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. Our primary result indicates that the intermediate order dynamical ferromagnetic phase is dynamic metastable in nature and owns a peculiar characteristic in its stability and response to external driving field when compared with fully order dynamic ferromagnetic phase.
232 - Gloria M. Buendia 2008
We study the dynamical response of a two-dimensional Ising model subject to a square-wave oscillating external field. In contrast to earlier studies, the system evolves under a so-called soft Glauber dynamic [P.A. Rikvold and M. Kolesik, J. Phys. A: Math. Gen. 35, L117 (2002)], for which both nucleation and interface propagation are slower and the interfaces smoother than for the standard Glauber dynamic. We choose the temperature and magnitude of the external field such that the metastable decay of the system following field reversal occurs through nucleation and growth of many droplets of the stable phase, i.e., the multidroplet regime. Using kinetic Monte Carlo simulations, we find that the system undergoes a nonequilibrium phase transition, in which the symmetry-broken dynamic phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. The critical point is located where the half-period of the external field is approximately equal to the metastable lifetime of the system. We employ finite-size scaling analysis to investigate the characteristics of this dynamical phase transition. The critical exponents and the fixed-point value of the fourth-order cumulant are found to be consistent with the universality class of the two-dimensional equilibrium Ising model. As this universality class has previously been established for the same nonequilibrium model evolving under the standard Glauber dynamic, our results indicate that this far-from-equilibrium phase transition is universal with respect to the choice of the stochastic dynamics.
69 - Kyungwha Park 2003
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun . Math. Phys. 137, 209 (1991)]. Contrary to common belief, we find that both A and Gamma depend significantly on the stochastic dynamic. In particular, for a ``soft dynamic, in which the effects of the interactions and the applied field factorize in the transition rates, Gamma does NOT simply equal the energy barrier against nucleation, as it does for the standard Glauber dynamic, which does not have this factorization property.
We explore the archetype problem of an escape dynamics occurring in a symmetric double well potential when the Brownian particle is driven by {it white Levy noise} in a dynamical regime where inertial effects can safely be neglected. The behavior of escaping trajectories from one well to another is investigated by pointing to the special character that underpins the noise-induced discontinuity which is caused by the generalized Brownian paths that jump beyond the barrier location without actually hitting it. This fact implies that the boundary conditions for the mean first passage time (MFPT) are no longer determined by the well-known local boundary conditions that characterize the case with normal diffusion. By numerically implementing properly the set up boundary conditions, we investigate the survival probability and the average escape time as a function of the corresponding Levy white noise parameters. Depending on the value of the skewness $beta$ of the Levy noise, the escape can either become enhanced or suppressed: a negative asymmetry $beta$ causes typically a decrease for the escape rate while the rate itself depicts a non-monotonic behavior as a function of the stability index $alpha$ which characterizes the jump length distribution of Levy noise, with a marked discontinuity occurring at $alpha=1$. We find that the typical factor of ``two that characterizes for normal diffusion the ratio between the MFPT for well-bottom-to-well-bottom and well-bottom-to-barrier-top no longer holds true. For sufficiently high barriers the survival probabilities assume an exponential behavior. Distinct non-exponential deviations occur, however, for low barrier heights.
108 - Julian Sienkiewicz 2014
We solve the growing asymmetric Ising model [Phys. Rev. E 89, 012105 (2014)] in the topologies of deterministic and stochastic (random) scale-free trees predicting its non-monotonous behavior for external fields smaller than the coupling constant $J$ . In both cases we indicate that the crossover temperature corresponding to maximal magnetization decays approximately as $(ln ln N)^{-1}$, where $N$ is the number of nodes in the tree.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا