We report a study of oxygen isotope effects on low temperature specific heat, magnetization, and resistivity of La$_{1-x}$Ca$_{x}$MnO$_{3}$ and (La$_{1-y}$Pr$_{y})_{0.67}$Ca$_{0.33}$MnO$_{3}$. For the metallic compositions of La$_{1-x}$Ca$_{x}$MnO$_{
3}$ and for charge-ordered La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ no change in low temperature specific heat has been detected with $^{16}$O -$^{18}$O exchange, while compounds of (La$_{1-y}$Pr$_{y})_{0.67}$Ca$_{0.33}$MnO$_{3}$ (0.4<y<0.6) show a significant change in low temperature properties. The low temperature specific heat indicates a presence of the charge-ordered phase even in compositions of (La$_{1-y}$Pr$_{y})_{0.67}$Ca$_{0.33}$MnO$_{3}$ which are metallic at low temperatures. We suggest that the changes induced by the oxygen isotope exchange are caused by an increase of the charge-ordered phase in $^{18}$O samples.
The gigantic reduction of the electric resistivity under the applied magnetic field, CMR effect, is now widely accepted to appear in the vicinity of the insulator to metal transition of the perovskite manganites. Recently, we have discovered the firs
t order transition from ferromagnetic metal to insulator in $rm La_{0.88}Sr_{0.12}MnO_3$ of the CMR manganite. This phase transition induces the tremendous increase of the resistivity under the external magnetic field just near above the phase transition temperature. We report here fairly detailed results from the systematic experiments including neutron and synchrotron X-ray scattering studies.
Y{0.5}$Ca{0.5}BaCo4O7 contains kagome layers of Co ions, whose spins are strongly coupled according to a Curie-Weiss temperature of -2200 K. At low temperatures, T = 1.2 K, our diffuse neutron scattering study with polarization analysis reveals chara
cteristic spin correlations close to a predicted two-dimensional coplanar ground state with staggered chirality. The absence of three dimensional long-range AF order proves negligible coupling between the kagome layers. The scattering intensities are consistent with high spin S=3/2 states of Co2+ in the kagome layers and low spin S=0 states for Co3+ ions at interlayer sites. Our observations agree with previous Monte Carlo simulations indicating a ground state of only short range chiral order.
We investigate the low-temperature electron, lattice, and spin dynamics of LaMnO_3 (LMO) and La_0.7Ca_0.3MnO_3 (LCMO) by resonant pump-probe reflectance spectroscopy. Probing the high-spin d-d transition as a function of time delay and probe energy,
we compare the responses of the Mott insulator and the double-exchange metal to the photoexcitation. Attempts have previously been made to describe the sub-picosecond dynamics of CMR manganites in terms of a phenomenological three temperature model describing the energy transfer between the electron, lattice and spin subsystems followed by a comparatively slow exponential decay back to the ground state. However, conflicting results have been reported. Here we first show clear evidence of an additional component in the long term relaxation due to film-to-substrate heat diffusion and then develop a modified three temperature model that gives a consistent account for this feature. We confirm our interpretation by using it to deduce the bandgap in LMO. In addition we also model the non-thermal sub-picosecond dynamics, giving a full account of all observed transient features both in the insulating LMO and the metallic LCMO.
Recent studies have dealt with the electronic and magnetic ground state properties of the tetraboride material MnB$_4$. So far, however, the ground state properties could not be established unambiguously. Therefore, here we present an experimental st
udy on single-crystalline MnB$_4$ by means of resistivity and magnetization measurements. For this, we have developed a sample holder that allows four-point ac resistivity measurements on these very small ($sim$,100,$mu$m) samples. With our data we establish that the electronic ground state of MnB$_4$ is intrinsically that of a pseudo-gap system, in agreement with recent band structure calculations. Furthermore, we demonstrate that the material does neither show magnetic order nor a behavior arising from the vicinity to a magnetically ordered state, this way disproving previous claims.