ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

58   0   0.0 ( 0 )
 نشر من قبل Damian Scherlis
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. We apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.



قيم البحث

اقرأ أيضاً

A method for carrying out semiclassical initial value representation calculations using first-principles molecular dynamics (FP-SC-IVR) is presented. This method can extract the full vibrational power spectrum of carbon dioxide from a single trajecto ry providing numerical results that agree with experiment even for Fermi resonant states. The computational demands of the method are comparable to those of classical single-trajectory calculations, while describing uniquely quantum features such as the zero-point energy and Fermi resonances. By propagating the nuclear degrees of freedom using first-principles Born-Oppenheimer molecular dynamics, the stability of the method presented is improved considerably when compared to dynamics carried out using fitted potential energy surfaces and numerical derivatives.
We discuss the key steps that have to be followed to calculate coherent quantum transport in molecular and atomic-scale systems, making emphasis on the ab-initio Gaussian Embedded Cluster Method recently developed by the authors. We present various r esults on a simple system such as a clean Au nanocontact and the same nanocontact in the presence of hydrogen that illustrate the applicability of this method in the study and interpretation of a large range of experiments in the field of molecular electronics.
We report studies on the vibrational and elastic behavior of lithium oxide, Li2O around its superionic transition temperature. Phonon frequencies calculated using the ab-initio and empirical potential model are in excellent agreement with the reporte d experimental data. Further, volume dependence of phonon dispersion relation has been calculated, which indicates softening of zone boundary transverse acoustic phonon mode along [110] at volume corresponding to the superionic transition in Li2O. The instability of phonon mode could be a precursor leading to the dynamical disorder of the lithium sub lattice. Empirical potential model calculations have been carried out to deduce the probable direction of lithium diffusion by constructing a super cell consisting of 12000 atoms. The barrier energy for lithium ion diffusion from one lattice site to another at ambient and elevated temperature has been computed. Barrier energy considerations along various symmetry directions indicate that [001] is the most favourable direction for lithium diffusion in the fast ion phase. This result corroborates our observation of dynamical instability in the transverse mode along (110) wave vector. Using molecular dynamics simulations we have studied the temperature variation of elastic constants, which are important to the high-temperature stability of lithium oxide.
The nucleation of cavities in a homogenous polymer under tensile strain is investigated in a coarse-grained molecular dynamics simulation. In order to establish a causal relation between local microstructure and the onset of cavitation, a detailed an alysis of some local properties is presented. In contrast to common assumptions, the nucleation of a cavity is neither correlated to a local loss of density nor, to the stress at the atomic scale and nor to the chain ends density in the undeformed state. Instead, a cavity in glassy polymers nucleates in regions that display a low bulk elastic modulus. This criterion allows one to predict the cavity position before the cavitation occurs. Even if the localization of a cavity is not directly predictable from the initial configuration, the elastically weak zones identified in the initial state emerge as favorite spots for cavity formation.
102 - Shunsuke A. Sato 2020
Nonequilibrium electron dynamics in solids is an important subject from both fundamental and technological points of view. The recent development of laser technology has enabled us to study ultrafast electron dynamics in the time domain. First-princi ples calculation is a powerful tool for analyzing such complex electron dynamics and clarifying the physics behind the experimental observation. In this article, we review the recent development of the first-principles calculation for light-induced electron dynamics in solids by revising its application to recent attosecond experiments. The electron dynamics calculations offer an accurate description of static and transient optical properties of solids and provide physics insight into light-induced electron dynamics. Furthermore, the microscopic decomposition of transient properties of nonequilibrium systems has been developed to extract microscopic information from the simulation results. The first-principles analysis opened a novel path to analyze the nonequilibrium electron dynamics in matter and to provide the fundamental understanding complementarily with the sophisticated experimental technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا