ﻻ يوجد ملخص باللغة العربية
The local density of states power spectrum of optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (BSCCO) has been interpreted in terms of quasiparticle interference peaks corresponding to an octet of scattering wave vectors connecting k-points where the density of states is maximal. Until now, theoretical treatments have not been able to reproduce the experimentally observed weights and widths of these octet peaks; in particular, the predominance of the dispersing q$_1$ peak parallel to the Cu-O bond directions has remained a mystery. In addition, such theories predict background features which are not observed experimentally. Here, we show that most of the discrepancies can be resolved when a realistic model for the out-of-plane disorder in BSCCO is used. Weak extended potential scatterers, which are assumed to represent cation disorder, suppress large-momentum features and broaden the low-energy q$_7$-peaks, whereas scattering at order parameter variations, possibly caused by a dopant-modulated pair interaction around interstitial oxygens, strongly enhances the dispersing q$_1$-peaks.
The recent discovery of superconductivity in NaSn$_2$As$_2$ with a van der Waals layered structure raises immediate questions on its pairing mechanism and underlying electronic structure. Here, we present measurements of the temperature-dependent mag
Rapid proliferation of hyperspectral imaging in scanning probe microscopies creates unique opportunities to systematically capture and categorize higher dimensional datasets, toward new insights into electronic, mechanical and chemical properties of
We discuss a scenario for interface-induced superconductivity involving pairing by dipolar excitations proximate to a two-dimensional electron system controlled by a transverse electric field. If the interface consists of transition metal oxide mater
In the theoretical analyses of impurity effects in superconductors the assumption is usually made that all quantities, except for the Green functions, are slowly varying functions of energy. When this so-called Fermi Surface Restricted Approximation
Extensive research into high temperature superconducting cuprates is now focused upon identifying the relationship between the classic pseudogap phenomenon$^{1,2}$ and the more recently investigated density wave state$^{3-13}$. This state always exhi