ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical activation and electron spin coherence of ultra low dose antimony implants in silicon

173   0   0.0 ( 0 )
 نشر من قبل Thomas Schenkel
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We implanted ultra low doses (2x10^11 cm-2) of 121Sb ions into isotopically enriched 28Si and find high degrees of electrical activation and low levels of dopant diffusion after rapid thermal annealing. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant depths, and the interface quality. At 5.2 K, a spin decoherence time, T2, of 0.3 ms is found for profiles peaking 50 nm below a Si/SiO2 interface, increasing to 0.75 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.



قيم البحث

اقرأ أيضاً

351 - C. D. Weis , C. C. Lo , V. Lang 2012
We have performed continuous wave and pulsed electron spin resonance measurements of implanted bismuth donors in isotopically enriched silicon-28. Donors are electrically activated via thermal annealing with minimal diffusion. Damage from bismuth ion implantation is repaired during thermal annealing as evidenced by narrow spin resonance linewidths (B_pp=12uT and long spin coherence times T_2=0.7ms, at temperature T=8K). The results qualify ion implanted bismuth as a promising candidate for spin qubit integration in silicon.
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors close to quantum dots. Ion detec tors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.
Electric field enhanced electron spin coherence is characterized using time-resolved Faraday rotation spectroscopy in n-type ZnO epilayers grown by molecular beam epitaxy. An in-plane dc electric field E almost doubles the transverse spin lifetime at 20 K, without affecting the effective g-factor. This effect persists till high temperatures, but decreases with increasing carrier concentration. Comparisons of the variations in the spin lifetime, the carrier recombination lifetime and photoluminescence lifetimes indicate that the applied E enhances the radiative recombination rate. All observed effects are independent of crystal directionality and are performed at low magnetic fields (B < 0.2 T).
75 - D. Simin , H. Kraus , A. Sperlich 2016
We demonstrate that silicon carbide (SiC) with natural isotope abundance can preserve a coherent spin superposition in silicon vacancies over unexpectedly long time approaching 0.1 seconds. The spin-locked subspace with drastically reduced decoherenc e rate is attained through the suppression of heteronuclear spin cross-talking by applying a moderate magnetic field in combination with dynamic decoupling from the nuclear spin baths. We identify several phonon-assisted mechanisms of spin-lattice relaxation, ultimately limiting quantum coherence, and find that it can be extremely long at cryogenic temperature, equal or even longer than 8 seconds. Our approach may be extended to other polyatomic compounds and open a path towards improved qubit memory for wafer-scale quantum techmologies.
197 - C. Kasper , D. Klenkert , Z. Shang 2019
Irradiation-induced lattice defects in silicon carbide (SiC) have already exceeded their previous reputation as purely performance-inhibiting. With their remarkable quantum properties, such as long room-temperature spin coherence and the possibility of downscaling to single-photon source level, they have proven to be promising candidates for a multitude of quantum information applications. One of the most crucial parameters of any quantum system is how long its quantum coherence can be preserved. By using the pulsed optically detected magnetic resonance (ODMR) technique, we investigate the spin-lattice relaxation time ($T_1$) and spin coherence time ($T_2$) of silicon vacancies in 4H-SiC created by neutron, electron and proton irradiation in a broad range of fluences. We also examine the effect of irradiation energy and sample annealing. We establish a robustness of the $T_1$ time against all types of irradiation and reveal a universal scaling of the $T_2$ time with the emitter density. Our results can be used to optimize the coherence properties of silicon vacancy qubits in SiC for specific tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا