ﻻ يوجد ملخص باللغة العربية
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wavefunctions through asymmetric e-e and e-h exchange interactions.
We present experimental and theoretical results on the high-quality single-layer MoS$_{2}$ which reveal the fine structure of charged excitons, i.e., trions. In the emission spectra we resolve and identify two trion peaks, T$_{1}$ and T$_{2}$, resemb
Coherent population trapping (CPT) refers to the steady-state trapping of population in a coherent superposition of two ground states which are coupled by coherent optical fields to an intermediate state in a three-level atomic system. Recently, CPT
Motional narrowing refers to the striking phenomenon where the resonance line of a system coupled to a reservoir becomes narrower when increasing the reservoir fluctuation. A textbook example is found in nuclear magnetic resonance, where the fluctuat
The optical creation and recombination of charged biexciton and trion complexes in an (In,Ga)As/GaAs quantum dot is investigated by micro-photoluminescence spectroscopy. Photon cross-correlation measurements demonstrate the temporally correlated deca
The negatively-charged silicon-vacancy (SiV$^-$) center in diamond is a promising single photon source for quantum communications and information processing. However, the centers implementation in such quantum technologies is hindered by contention s