ﻻ يوجد ملخص باللغة العربية
We have measured the electrical resistivity, thermoelectric power, Hall coefficient, and magnetoresistance (MR) on single crystals of PrOs$_{4}$Sb$_{12}$, LaOs$_{4}$Sb$_{12}$ and NdOs$_{4}$Sb$_{12}$. All the transport properties in PrOs$_{4}$Sb$_{12}$ are similar to those in LaOs$_{4}$Sb$_{12}$ and NdOs$_{4}$Sb$_{12}$ at high temperatures, indicating the localized character of 4$f$-electrons. The transverse MR both in LaOs$_{4}$Sb$_{12}$ and PrOs$_{4}$Sb$_{12}$ tends to saturate for wide field directions, indicating these compounds to be uncompensated metals with no open orbit. We have determined the phase diagram of the field induced ordered phase by the MR measurement for all the principle field directions, which indicates an unambiguous evidence for the $Gamma_{rm 1}$ singlet crystalline electric field ground state.
We have investigated the de Haas-van Alphen effect in the Pr-based heavy fermion superconductor PrOs$_4$Sb$_{12}$.The topology of Fermi surface is close to the reference compound LaOs$_4$Sb$_{12}$ and well explained by the band structure calculation
We have investigated the electrical resistivity of the heavy fermion superconductor PrOs$_{4}$Sb$_{12}$ in the mixed state. We found unusual double minima in the flux-flow resistivity as a function of magnetic field below the upper critical field for
We report $^{121,123}$Sb nuclear quadrupole resonance (NQR) measurements in the filled-skutterudite superconductor PrOs$_4$Sb$_{12}$ in the temperature range of 0.05-30 K. The electric field gradients (EFG), $V_{zz}$ and $V_{xx}-V_{yy}$, at the Sb si
We report inelastic neutron scattering experiments performed to investigate the low energy magnetic excitations on single crystals of the heavy-fermion superconductor PrOs$_{4}$Sb$_{12}$. The observed excitation clearly softens at a wave vector Q = (
The filled skutterudite compound PrOsSb{} exhibits superconductivity below a critical temperature $T_mathrm{c} = 1.85$ K that develops out of a nonmagnetic heavy Fermi liquid with an effective mass $m^{*} approx 50 m_mathrm{e}$, where $m_mathrm{e}$ i