ﻻ يوجد ملخص باللغة العربية
We have developed a controlled and highly reproducible method of making nanometer-spaced electrodes using electromigration in ambient lab conditions. This advance will make feasible single molecule measurements of macromolecules with tertiary and quaternary structures that do not survive the liquid-helium temperatures at which electromigration is typically performed. A second advance is that it yields gaps of desired tunnelling resistance, as opposed to the random formation at liquid-helium temperatures. Nanogap formation occurs through three regimes: First it evolves through a bulk-neck regime where electromigration is triggered at constant temperature, then to a few-atom regime characterized by conductance quantum plateaus and jumps, and finally to a tunnelling regime across the nanogap once the conductance falls below the conductance quantum.
We have investigated the electronic properties of a C_60 molecule in between carbon nanotube leads. This problem has been tackled within a quantum chemical treatment utilizing a density functional theory-based LCAO approach combined with the Landauer
Molecular electronic devices are the upmost destiny of the miniaturization trend of electronic components. Although not yet reproducible on large scale, molecular devices are since recently subject of intense studies both experimentally and theoretic
Lithographically fabricated point contacts serve as important examples of mesoscopic conductors, as electrodes for molecular electronics, and as ultra-sensitive transducers for mechanical motion. We have developed a reproducible technique for fabrica
{it Ab initio} computational methods for electronic transport in nanoscaled systems are an invaluable tool for the design of quantum devices. We have developed a flexible and efficient algorithm for evaluating $I$-$V$ characteristics of atomic juncti
We describe a method for fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneous