ترغب بنشر مسار تعليمي؟ اضغط هنا

Bose Einstein Condensate in a Box

172   0   0.0 ( 0 )
 نشر من قبل Todd Meyrath
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.



قيم البحث

اقرأ أيضاً

128 - J. Esteve , C. Gross , A. Weller 2008
Entanglement, a key feature of quantum mechanics, is a resource that allows the improvement of precision measurements beyond the conventional bound reachable by classical means. This is known as the standard quantum limit, already defining the accura cy of the best available sensors for various quantities such as time or position. Many of these sensors are interferometers in which the standard quantum limit can be overcome by feeding their two input ports with quantum-entangled states, in particular spin squeezed states. For atomic interferometers, Bose-Einstein condensates of ultracold atoms are considered good candidates to provide such states involving a large number of particles. In this letter, we demonstrate their experimental realization by splitting a condensate in a few parts using a lattice potential. Site resolved detection of the atoms allows the measurement of the conjugated variables atom number difference and relative phase. The observed fluctuations imply entanglement between the particles, a resource that would allow a precision gain of 3.8 dB over the standard quantum limit for interferometric measurements.
The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$mu $}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and alow us to produce pure condensates with up to {$10^5$} atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.
107 - S. J. Woo , S. Choi , 2004
We describe an approach to quantum control of the quasiparticle excitations in a trapped Bose-Einstein condensate based on adiabatic and diabatic changes in the trap anisotropy. We describe our approach in the context of Landau-Zener transition at th e avoided crossings in the quasiparticle excitation spectrum. We show that there can be population oscillation between different modes at the specific aspect ratios of the trapping potential at which the mode energies are almost degenerate. These effects may have implications in the expansion of an excited condensate as well as the dynamics of a moving condensate in an atomic wave guide with a varying width.
We have created a dark quantum superposition state of a Rb Bose-Einstein condensate (BEC) and a degenerate gas of Rb$_2$ ground state molecules in a specific ro-vibrational state using two-color photoassociation. As a signature for the decoupling of this coherent atom-molecule gas from the light field we observe a striking suppression of photoassociation loss. In our experiment the maximal molecule population in the dark state is limited to about 100 Rb$_2$ molecules due to laser induced decay. The experimental findings can be well described by a simple three mode model.
We report on the experimental observation of dynamic localization of a Bose-Einstein condensate in a shaken optical lattice, both for sinusoidal and square-wave forcing. The formulation of this effect in terms of a quasienergy band collapse, backed b y the excellent agreement of the observed collapse points with the theoretical predictions, suggests the feasibility of systematic quasienergy band engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا