ﻻ يوجد ملخص باللغة العربية
In this letter, we show how the Survey Propagation algorithm can be generalized to include external forcing messages, and used to address selectively an exponential number of glassy ground states. These capabilities can be used to explore efficiently the space of solutions of random NP-complete constraint satisfaction problems, providing a direct experimental evidence of replica symmetry breaking in large-size instances. Finally, a new lossy data compression protocol is introduced, exploiting as a computational resource the clustered nature of the space of addressable states.
Ground state entropy of the network source location problem is evaluated at both the replica symmetric level and one-step replica symmetry breaking level using the entropic cavity method. The regime that is a focus of this study, is closely related t
Across many scientific and engineering disciplines, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we study the robustness of the ground states of $pm J$ spin glasses on random graph
We investigate the performance of the recently proposed stationary Fokker-Planck sampling method considering a combinatorial optimization problem from statistical physics. The algorithmic procedure relies upon the numerical solution of a linear secon
We present a detailed proof of a previously announced result (C.M. Newman and D.L. Stein, Phys. Rev. Lett. v. 84, pp. 3966--3969 (2000)) supporting the absence of multiple (incongruent) ground state pairs for 2D Edwards-Anderson spin glasses (with ze
In the Edwards-Anderson model of spin glasses with a bimodal distribution of bonds, the degeneracy of the ground state allows one to define a structure called backbone, which can be characterized by the rigid lattice (RL), consisting of the bonds tha