ﻻ يوجد ملخص باللغة العربية
We have used coherent, resonant, x-ray magnetic speckle patterns to measure the statistical evolution of the microscopic magnetic domains in perpendicular magnetic films as a function of the applied magnetic field. Our work constitutes the first direct, ensemble-averaged study of microscopic magnetic return point memory, and demonstrates the profound impact of interfacial roughness on this phenomenon. At low fields, the microscopic magnetic domains forget their past history with an exponential field dependence.
One of the problems often encountered in X-ray mirror manufacturing is setting proper manufacturing tolerances to guarantee an angular resolution - often expressed in terms of Point Spread Function (PSF) - as needed by the specific science goal. To d
Here we report the optical and x-ray absorption (XAS) spectra of the wide-band-gap oxide MgO using density functional theory (DFT) and many-body perturbation theory (MBPT). Our comprehensive study of the electronic structure shows that while the band
Using a variety of thermodynamic measurements made in magnetic fields, we show evidence that the diffusionless transition (DT) in many shape-memory alloys is related to significant changes in the electronic structure. We investigate three alloys that
Magnetic charges, or magnetic monopoles, may form in the electronic structure of magnetic materials where ions are deprived of symmetry with respect to spatial inversion. Predicted in 2009, the strange magnetic, pseudoscalars have recently been found
In the laboratory study of extreme conditions of temperature and density, the exposure of matter to high intensity radiation sources has been of central importance. Here we interrogate the performance of multi-layered targets in experiments involving