ﻻ يوجد ملخص باللغة العربية
The effects of sampling rate and total measurement time have been determined for single-point measurements of step fluctuations within the context of first-passage properties. Time dependent STM has been used to evaluate step fluctuations on Ag(111) films grown on mica as a function of temperature (300-410 K), on screw dislocations on the facets of Pb crystallites at 320K, and on Al-terminated Si(111) over the temperature range 770K - 970K. Although the fundamental time constant for step fluctuations on Ag and Al/Si varies by orders of magnitude over the temperature ranges of measurement, no dependence of the persistence amplitude on temperature is observed. Instead, the persistence probability is found to scale directly with t/Dt where Dt is the time interval used for sampling. Survival probabilities show a more complex scaling dependence which includes both the sampling interval and the total measurement time tm. Scaling with t/Dt occurs only when Dt/tm is a constant. We show that this observation is equivalent to theoretical predictions that the survival probability will scale as Dt/L^z, where L is the effective length of a step. This implies that the survival probability for large systems, when measured with fixed values of tm or Dt should also show little or no temperature dependence.
Results of analytic and numerical investigations of first-passage properties of equilibrium fluctuations of monatomic steps on a vicinal surface are reviewed. Both temporal and spatial persistence and survival probabilities, as well as the probabilit
Time dependent STM has been used to evaluate step fluctuations as a function of temperature (300-450 K) on Ag(111) films grown on mica. The temporal correlation function scales as a power law in time, t^1/n with measured values of 1/n varying over a
We report the results of analytic and numerical investigations of the time scale of survival or non-zero-crossing probability $S(t)$ in equilibrium step fluctuations described by Langevin equations appropriate for attachment/detachment and edge-diffu
We analyze correlations in step-edge fluctuations using the Bortz-Kalos-Lebowitz kinetic Monte Carlo algorithm, with a 2-parameter expression for energy barriers, and compare with our VT-STM line-scan experiments on spiral steps on Pb(111). The scali
We report the results of numerical investigations of the steady-state (SS) and finite-initial-conditions (FIC) spatial persistence and survival probabilities for (1+1)--dimensional interfaces with dynamics governed by the nonlinear Kardar--Parisi--Zh