ﻻ يوجد ملخص باللغة العربية
We consider the voter model dynamics in random networks with an arbitrary distribution of the degree of the nodes. We find that for the usual node-update dynamics the average magnetization is not conserved, while an average magnetization weighted by the degree of the node is conserved. However, for a link-update dynamics the average magnetization is still conserved. For the particular case of a Barabasi-Albert scale-free network the voter model dynamics leads to a partially ordered metastable state with a finite size survival time. This characteristic time scales linearly with system size only when the updating rule respects the conservation law of the average magnetization. This scaling identifies a universal or generic property of the voter model dynamics associated with the conservation law of the magnetization.
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to di
All dynamical systems of biological interest--be they food webs, regulation of genes, or contacts between healthy and infectious individuals--have complex network structure. Wigners semicircular law and Girkos circular law describe the eigenvalues of
Consider a system of particles moving independently as Brownian motions until two of them meet, when the colliding pair annihilates instantly. The construction of such a system of annihilating Brownian motions (aBMs) is straightforward as long as we
Motivated by the fact that the pseudo-Helmholtz function is a valid Lyapunov function for characterizing asymptotic stability of complex balanced mass action systems (MASs), this paper develops the generalized pseudo-Helmholtz function for stability
In the voter model, each node of a graph has an opinion, and in every round each node chooses independently a random neighbour and adopts its opinion. We are interested in the consensus time, which is the first point in time where all nodes have the