ﻻ يوجد ملخص باللغة العربية
We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-energy single particle states are gradually integrated out. Interestingly, we obtain the same renormalization group equations as those derived by Lal, Rao, and Sen, for a system composed of a single node coupled to several semi-infinite 1D wires. The main difference between the single node geometry and a regular lattice is that in the latter case, the single particle spectrum is organized into periodic energy bands, so that the renormalization procedure has to stop when the last totally occupied band has been eliminated. We therefore predict a strongly renormalized Luttinger liquid behavior for generic filling factors, which should exhibit power-law suppression of the conductivity at low temperatures E_{F}/(k_{F}a) << k_{B}T << E_{F}, where a is the lattice spacing and k_{F}a >> 1. Some fully insulating ground-states are expected only for a discrete set of integer filling factors for the electronic system. A detailed discussion of the scattering matrix flow and its implication for the low energy band structure is given on the example of a square lattice.
We investigate a one-dimensional electron liquid with two point scatterers of different strength. In the presence of electron interactions, the nonlinear conductance is shown to depend on the current direction. The resulting asymmetry of the transpor
We study a dynamic boundary, e.g. a mobile impurity, coupled to N independent Tomonaga-Luttinger liquids (TLLs) each with interaction parameter K. We demonstrate that for N>2 there is a quantum phase transition at K>1/2, where the TLL phases lock tog
In this work we discuss extensions of the pioneering analysis by Dzyaloshinskii and Larkin of correlation functions for one-dimensional Fermi systems, focusing on the effects of quasiparticle relaxation enabled by a nonlinear dispersion. Throughout t
We study the DC spin current induced into an unbiased quantum spin Hall system through a two-point contacts setup with time dependent electron tunneling amplitudes. By means of two external gates, it is possible to drive a current with spin-preservin
Time-periodic driving facilitates a wealth of novel quantum states and quantum engineering. The interplay of Floquet states and strong interactions is particularly intriguing, which we study using time-periodic fields in a one-dimensional quantum gas