ﻻ يوجد ملخص باللغة العربية
Scaling laws express a systematic and universal simplicity among complex systems in nature. For example, such laws are of enormous significance in biology. Scaling relations are also important in the physical sciences. The seminal 1986 discovery of high transition-temperature (high-T_c) superconductivity in cuprate materials has sparked an intensive investigation of these and related complex oxides, yet the mechanism for superconductivity is still not agreed upon. In addition, no universal scaling law involving such fundamental properties as T_c and the superfluid density rho_s, a quantity indicative of the number of charge carriers in the superconducting state, has been discovered. Here we demonstrate that the scaling relation rho_s propto sigma_{dc} T_c, where the conductivity sigma_{dc} characterizes the unidirectional, constant flow of electric charge carriers just above T_c, universally holds for a wide variety of materials and doping levels. This surprising unifying observation is likely to have important consequences for theories of high-T_c superconductivity.
We propose and show that the c-axis transport in high-temperature superconductors is controlled by the pseudogap energy and the c-axis resistivity satisfies a universal scaling law in the pseudogap phase. We derived approximately a scaling function f
An analytical model invoking variations in the charge-carrier density is used to generate magnetoresistance curves that are almost indistinguishable from those produced by sophisticated numerical models. This demonstrates that, though disorder is piv
Dramatic evolution of properties with minute change in the doping level is a hallmark of the complex chemistry which governs cuprate superconductivity as manifested in the celebrated superconducting domes as well as quantum criticality taking place a
The relation between the incommensurability observed in neutron scattering experiments in bilayer cuprate superconductors and the electronic structure is investigated. It is found that the observed incommesurability pattern, as well as its dependence
A universal scaling relation, $rho_s propto sigma(T_c)times T_c$ has been reported by Homes $et$ $al$. (Nature (London) {bf 430}, 539 (2004)) where $rho_s$ is the superfluid density and $sigma(T)$ is the DC conductivity. The relation was shown to app