ﻻ يوجد ملخص باللغة العربية
The crystalline electric field (CEF) energy level scheme of the heavy fermion superconductor CeCoIn_5 has been determined by means of inelastic neutron scattering (INS). Peaks observed in the INS spectra at 8 meV and 27 meV with incident neutron energies between E_i=30-60 meV and at a temperature T = 10 K correspond to transitions from the ground state to the two excited states, respectively. The wavevector and temperature dependence of these peaks are consistent with CEF excitations. Fits of the data to a CEF model yield the CEF parameters B^0_2=-0.80 meV, B^0_4=0.059 meV, and |B^4_4|= 0.137 meV corresponding to an energy level scheme: Gamma_7^(1) (0)[=0.487|+/-5/2> - 0.873|-/+3/2>], Gamma_7^(2) (8.6 meV, 100 K), and Gamma_6 (24.4 meV, 283 K).
CeRh$_6$Ge$_4$ is an unusual example of a stoichiometric heavy fermion ferromagnet, which can be cleanly tuned by hydrostatic pressure to a quantum critical point. In order to understand the origin of this anomalous behavior, we have characterized th
We report a systematic study of temperature- and field-dependent charge ($boldsymbol{rho}$) and entropy ($mathbf{S}$) transport in the heavy-fermion superconductor CeIrIn$_5$. Its large positive thermopower $S_{xx}$ is typical of Ce-based Kondo latti
We investigate the crystal structure, magnetic properties, and crystalline-electric field of tetragonal, $I4_1/amd$, NaCeO$_2$. In this compound, Ce$^{3+}$ ions form a tetragonally elongated diamond lattice coupled by antiferromagnetic interactions (
Very recently we revealed a large family of triangular lattice quantum spin liquid candidates named rare-earth chalcogenides, which features a high-symmetry structure without structural/charge disorders and spin impurities, and may serve as an ideal
Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflec