ﻻ يوجد ملخص باللغة العربية
The in-plane resistivity, rho, and thermal conductivity, kappa, of a single crystal of Na_0.7CoO_2 were measured down to 40 mK. Verification of the Wiedemann-Franz law, kappa/T = L_0/rho as T -> 0, and observation of a T^2 dependence of rho at low temperature, rho = rho_0 + AT^2, establish the existence of a well-defined Fermi-liquid state. The measured value of coefficient A reveals enormous electron-electron scattering, characterized by the largest Kadowaki-Woods ratio, A/gamma^2, encountered in any material. The rapid suppression of A with magnetic field suggests a possible proximity to a magnetic quantum critical point. We also speculate on the possible role of magnetic frustration and proximity to a Mott insulator.
One of the most notorious non-Fermi liquid properties of both archetypal heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is an electrical resistivity that evolves linearly with temperature, T. In the heavy-fermion superco
Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid (ALFL) composed of quasiparticles in a narrow-band w
We report neutron scattering measurements, which reveal spin-liquid polymorphism in a 11 iron chalcogenide superconductor, a poorly-metallic magnetic FeTe tuned towards superconductivity by substitution of a small amount of Tellurium with iso-electro
Various angle-dependent measurements in hole-doped cuprates suggested that Non-Fermi liquid (NFL) and Fermi-liquid (FL) self-energies coexist in the Brillouin zone. Moreover, it is also found that NFL self-energies survive up to the overdoped region
Using mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the