ﻻ يوجد ملخص باللغة العربية
We study the low frequency current correlations of an individual single-walled carbon nanotube at liquid He temperature. We have distinguished two physical regimes -- zero dimensional quantum dot and one dimensional quantum wire -- in terms of an energy spacing from the finite tube length in both differential conductance and shot noise measurements. In a one dimensional wire regime, we observed a highly suppressed shot noise from all measured tube devices, suggesting that electron-electron interactions play an important role.
We present theoretical study of shot noise in single wall metallic carbon nanotubes weakly coupled to either nonmagnetic or ferromagnetic leads. Using the real-time diagrammatic technique, we calculate the current, Fano factor and tunnel magnetoresis
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to
We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.
AFM manipulation was used to controllably stretch individual metallic single-walled carbon nanotubes (SWNTs). We have found that SWNTs can sustain elongations as great as 30% without breaking. Scanned gate microscopy and transport measurements were u
We have contacted single-walled carbon nanotubes after aligning the tubes by the use of surface acoustic waves. The acoustoelectric current has been measured at 4.2 K and a probing of the low-dimensional electronic states by the surface acoustic wave