ﻻ يوجد ملخص باللغة العربية
Low lying excitations of electron liquids in the fractional quantum Hall (FQH) regime are studied by resonant inelastic light scattering methods. We present here results from charge and spin excitations of FQH states in the lowest spin-split Landau levels that are of current interest. In the range of filling factors $2/5 geq u geq 1/3$, we find evidence that low energy quasiparticle excitations can be interpreted with spin-split composite fermion quasi-Landau levels. At FQH states around $ u=3/2$, we find well-defined excitations at 4/3 and 8/5 that are consistent with a spin-unpolarized population of quasi-Landau levels.
We study the minimal excitations of fractional quantum Hall edges, extending the notion of levitons to interacting systems. Using both perturbative and exact calculations, we show that they arise in response to a Lorentzian potential with quantized f
We investigate the 1/3 fractional quantum Hall state with one and two quasiparticle excitations. It is shown that the quasiparticle excitations are best described as excited composite fermions occupying higher composite-fermion quasi-Landau levels. I
New low-lying excitations are observed by inelastic light scattering at filling factors $ u=p/(phi p pm 1)$ of the fractional quantum Hall regime with $phi=4$. Coexisting with these modes throughout the range $ u leq 1/3$ are $phi=2$ excitations seen
We report inelastic light scattering experiments in the fractional quantum Hall regime at filling factors $ ulesssim1/3$. A spin mode is observed below the Zeeman energy. The filling factor dependence of the mode energy is consistent with its assignm
We propose a device consisting in an antidot periodically driven in time by a magnetic field as a fractional quantum Hall counterpart of the celebrated mesoscopic capacitor-based single electron source. We fully characterize the setup as an ideal emi