ﻻ يوجد ملخص باللغة العربية
We present an absorption study of the neutral and positively charged exciton (trion) under the influence of a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the hole gas is created by the formation of trions. The evolution of these populations is studied, including the spin flip and trion formation processes. The contributions of several mechanisms to intensity changes are evaluated, including phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in p-doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding heavy holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blocked
The evolution of the magnetization in (Cd,Mn)Te quantum wells after a short pulse of magnetic field was determined from the giant Zeeman shift of spectroscopic lines. The dynamics in absence of magnetic field was found to be up to three orders of mag
Microphotoluminescence mapping experiments were performed on a modulation doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The zero field splitting that reveals the presence of a spontaneous magnetization in the low-temperature
Investigations of photoluminescence (PL) in the magnetic field of quantum structures based on the ZnSe quantum well with asymmetrical ZnBeMnSe and ZnBeSe barriers reveal that the introduction of Be into semimagnetic ZnMnSe causes a decrease of the ex
We study the impact of a free carrier reservoir on the optical properties of excitonic and trionic complexes in a MoSe$_2$ monolayer at cryogenic temperatures. By applying photodoping via a non-resonant pump laser the electron density can be controll
In order to single out dominant phenomena that account for carrier-controlled magnetism in p-(Cd,Mn)Te quantum wells we have carried out magneto-optical measurements and Monte Carlo simulations of time dependent magnetization. The experimental result