ﻻ يوجد ملخص باللغة العربية
X-ray and neutron powder diffraction data as a function of temperature are analyzed for the colossal dielectric constant material CaCu3Ti4O12. The local structure is studied using atomic pair distribution function analysis. No evidence is found for enhanced oxygen displacement parameters suggesting that short-range octahedral tilt disorder is minimal. However, an unusual temperature dependence for the atomic displacement parameters of calcium and copper is observed. Temperature dependent modeling of the structure, using bond valence concepts, suggests that the calcium atoms become underbonded below approximately 260 K, which provides a rationale for the unusually high Ca displacement parameters at low temperature.
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and x-ray powde
Lead sulfide is an important semiconductor that has found technological applications for over a century. Raman spectroscopy, a standard tool for the investigation and characterization of semiconductors, has limited application to this material becaus
High quality single crystals of Bi2Se3 were grown using a modified Bridgman technique, the detailed study were carried out using Raman spectroscopy and characterized by Laue diffraction and high resolution transmission electron microscopy. Polarized
In doped CuGeO3 systems, such as (Cu1-xZnx)GeO3 and Cu(Ge1-xSix)O3, the spin-Peierls (SP) ordering (T<Tsp) coexists with the antiferromagnetic (AF) phase (T<TN<Tsp). Tsp decreases while TN increases with increasing x in low doping region. For higher
The determination of the carrier diffusion length of semiconductors such as GaN and GaAs by cathodoluminescence imaging requires accurate knowledge about the spatial distribution of generated carriers. To obtain the lateral distribution of generated