ترغب بنشر مسار تعليمي؟ اضغط هنا

MgB2 Energy Gap Determination by Scanning Tunneling Spectroscopy

93   0   0.0 ( 0 )
 نشر من قبل Tom Heitmann
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report scanning tunneling spectroscopy (STS) measurements of the gap properties of both ceramic MgB2 and c-axis oriented epitaxial MgB2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunneling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap delta=2.3-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, delta=7.2 meV, consistent with a proposed two-band model.



قيم البحث

اقرأ أيضاً

CrBr$_{3}$ is a layered van der Waals material with magnetic ordering down to the 2D limit. For decades, based on optical measurements, it is believed that the energy gap of CrBr$_{3}$ is in the range of 1.68-2.1 eV. However, controversial results ha ve indicated that the band gap of CrBr$_{3}$ is possibly smaller than that. An unambiguous determination of the energy gap is critical to the correct interpretations of the experimental results of CrBr$_{3}$. Here, we present the scanning tunneling microscopy and spectroscopy (STM/S) results of CrBr$_{3}$ thin and thick flakes exfoliated onto pyropytic graphite (HOPG) surfaces and density functional theory (DFT) calculations to reveal the small energy gap (peak-to-peak energy gap to be 0.57 eV $pm$ 0.04 eV; or the onset signal energy gap to be 0.29 $pm$ 0.05 eV from dI/dV spectra). Atomic resolution topography images show the defect-free crystal structure and the dI/dV spectra exhibit multiple peak features measured at 77 K. The conduction band - valence band peak pairs in the multi-peak dI/dV spectrum agree very well with all reported optical transitions. STM topography images of mono- and bi-layer CrBr$_{3}$ flakes exhibit edge degradation due to short air exposure (~15 min) during sample transfer. The unambiguously determined small energy gap settles the controversy and is the key in better understanding CrBr$_{3}$ and similar materials.
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at low temperatures in the multiband superconductor MgB$_2$. We find a similar behavior in single crystalline samples and in single grains, which clearly shows the partial supe rconducting density of states of both the $pi$ and $sigma$ bands of this material. The superconducting gaps corresponding to both bands are not single valued. Instead, we find a distribution of superconducting gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of bands. Interband scattering effects, leading to a single gap structure at 4mV and a smaller critical temperature can be observed in some locations on the surface. S-S junctions formed by pieces of MgB$_2$ attached to the tip clearly show the subharmonic gap structure associated with this type of junctions. We discuss future developments and possible new effects associated with the multiband nature of superconductivity in this compound.
We present a combined experimental and theoretical study of the proximity effect in an atomic-scale controlled junction between two different superconductors. Elaborated on a Si(111) surface, the junction comprises a Pb nanocrystal with an energy gap of 1.2 meV, connected to a crystalline atomic monolayer of lead with a gap of 0.23 meV. Using in situ scanning tunneling spectroscopy we probe the local density of states of this hybrid system both in space and in energy, at temperatures below and above the critical temperature of the superconducting monolayer. Direct and inverse proximity effects are revealed with high resolution. Our observations are precisely explained with the help of a self-consistent solution of the Usadel equations. In particular, our results demonstrate that in the vicinity of the Pb islands, the Pb monolayer locally develops a finite proximity-induced superconducting order parameter, well above its own bulk critical temperature. This leads to a giant proximity effect where the superconducting correlations penetrate inside the monolayer a distance much larger than in a non-superconducting metal.
139 - S. Grothe , Shun Chi , P. Dosanjh 2012
Defects in LiFeAs are studied by scanning tunneling microscopy (STM) and spectroscopy (STS). Topographic images of the five predominant defects allow the identification of their position within the lattice. The most commonly observed defect is associ ated with an Fe site and does not break the local lattice symmetry, exhibiting a bound state near the edge of the smaller gap in this multi-gap superconductor. Three other common defects, including one also on an Fe site, are observed to break local lattice symmetry and are pair-breaking indicated by clear in-gap bound states, in addition to states near the smaller gap edge. STS maps reveal complex, extended real-space bound state patterns, including one with a chiral distribution of the local density of states (LDOS). The multiple bound state resonances observed within the gaps and at the inner gap edge are consistent with theoretical predictions for s$^{pm}$ gap symmetry proposed for LiFeAs and other iron pnictides.
Electronic Raman scattering studies on MgB2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm-1 and two coherence peaks at 109 cm-1 and 78 cm-1 which we identif y as the superconducting gaps in pi- and sigma-bands and as the Leggetts collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E2g mode. We observe ~2.5% hardening of the E2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا