ﻻ يوجد ملخص باللغة العربية
We study interacting GaAs hole bilayers in the limit of zero tunneling. When the layers have equal densities, we observe a phase coherent bilayer quantum Hall (QH) state at total filling factor $ u=1$, flanked by insulating phases at nearby fillings which suggest the formation of a pinned, bilayer Wigner crystal. As we transfer charge from one layer to another, the insulating phases disappear while, surprisingly, the $ u=1$ QH state becomes stronger. Concomitantly, a pronounced hysteresis develops in the longitudinal magnetoresistance at higher fillings, indicative of a first-order quantum phase transition.
We report direct measurements of the valley susceptibility, the change of valley population in response to applied symmetry-breaking strain, in an AlAs two-dimensional electron system. As the two-dimensional density is reduced, the valley susceptibil
By using different widths for two AlAs quantum wells comprising a bilayer system, we force the X-point conduction-band electrons in the two layers to occupy valleys with different Fermi contours, electron effective masses, and g-factors. Since the oc
We consider ground state of electron-hole graphene bilayer composed of two independently doped graphene layers when a condensate of spatially separated electron-hole pairs is formed. In the weak coupling regime the pairing affects only conduction ban
We study the two-dimensional spatially separated electron-hole system with density imbalance at absolute zero temperature. By means of the mean-field theory, we find that the Fulde-Ferrell state is fairly stabilized by the order parameter mixing effect.
We reveal a proximity effect between a topological band (Chern) insulator described by a Haldane model and spin-polarized Dirac particles of a graphene layer. Coupling weakly the two systems through a tunneling term in the bulk, the topological Chern