ﻻ يوجد ملخص باللغة العربية
The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving a novel type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are named the self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of the self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions which include a variety of transcendental functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties.
A novel method of summation for power series is developed. The method is based on the self-similar approximation theory. The trick employed is in transforming, first, a series expansion into a product expansion and in applying the self-similar renorm
The method of self-similar factor approximants is completed by defining the approximants of odd orders, constructed from the power series with the largest term of an odd power. It is shown that the method provides good approximations for transcendent
Motivated by its potential application to earthquake statistics, we study the exactly self-similar branching process introduced recently by Vere-Jones, which extends the ETAS class of conditional branching point-processes of triggered seismicity. One
The two-dimensional Loewner exploration process is generalized to the case where the random force is self-similar with positively correlated increments. We model this random force by a fractional Brownian motion with Hurst exponent $Hgeq frac{1}{2}eq
We characterize the universal far-from-equilibrium dynamics of the isolated two-dimensional quantum Heisenberg model. For a broad range of initial conditions, we find a long-lived universal prethermal regime characterized by self-similar behavior of