ﻻ يوجد ملخص باللغة العربية
The time evolution of the extremely diluted Blume-Emery-Griffiths neural network model is studied, and a detailed equilibrium phase diagram is obtained exhibiting pattern retrieval, fluctuation retrieval and self-sustained activity phases. It is shown that saddle-point solutions associated with fluctuation overlaps slow down considerably the flow of the network states towards the retrieval fixed points. A comparison of the performance with other three-state networks is also presented.
The optimal capacity of a diluted Blume-Emery-Griffiths neural network is studied as a function of the pattern activity and the embedding stability using the Gardner entropy approach. Annealed dilution is considered, cutting some of the couplings ref
The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied for arbitrary temperature. By employing a probabilistic signal-to-noise approach, a recursive scheme is found determining the time evolution of the dis
The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied at zero temperature for arbitrary using a probabilistic approach. A recursive scheme is found determining the complete time evolution of the order para
We extend the Blume-Emery-Griffiths (BEG) model to a two-component BEG model in order to study 2D systems with two order parameters, such as magnetic superconductors or two-component Bose-Einstein condensates. The model is investigated using Monte Ca
The canonical phase diagram of the Blume-Emery-Griffiths (BEG) model with infinite-range interactions is known to exhibit a fourth order critical point at some negative value of the bi-quadratic interaction $K<0$. Here we study the microcanonical pha