ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay of Rashba, Zeeman and Landau splitting in a magnetic two dimensional electron gas

119   0   0.0 ( 0 )
 نشر من قبل Charles R. Becker
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transport properties of a magnetic two dimensional electron gas consisting of a modulation doped n type HgMnTe/HgCdTe quantum well, QW, have been investigated. By analyzing the Shubnikov-de Haas oscillations and the node positions of their beating patterns, we have been able to separate the gate voltage dependent Rashba spin-orbit splitting from the temperature dependent giant Zeeman splitting. It has been experimentally demonstrated that the Rashba spin-orbit splitting is larger than or comparable to the $sp-d$ exchange interaction induced giant Zeeman splitting in this magnetic 2DEG even at moderately high magnetic fields.



قيم البحث

اقرأ أيضاً

The origin of the g-factor of the two-dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with the perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accomp anied by the Rashba spin-orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of the pairs of the Landau quantization levels due to the spinor-type wave functions. The energy levels depend on amplitudes of the magnetic and electric fields, on the g-factor {g-h}, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter {Z_h}={g_h}{m_h}/4{m_0}, where {m_h} is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value {Z_h}=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.
We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi$_2$Se$_3$ from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achie ved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.
Through magneto-transport measurements and analysis of the observed Shubnikov de Haas oscillations in (010) (AlxGa1-x)2O3/Ga2O3 heterostructures, spin-splitting of the Landau levels in the (010) Ga2O3 two-dimensional electron gas (2DEG) has been stud ied. Analysis indicates that the spin-splitting results from the Zeeman effect. By fitting the both the first and second harmonic of the oscillations as a function of magnetic field, we determine the magnitude of the Zeeman splitting to be 0.4$hbaromega_c$, with a corresponding effective g-factor of 2.7, for magnetic field perpendicular to the 2DEG.
We study the energy spectrum and electronic properties of two-dimensional electron gas in a periodic magnetic field of zero average with a symmetry of triangular lattice. We demonstrate how the structure of electron energy bands can be changed with t he variation of the field strength, so that we can start from nearly free electron gas and then transform it continuously to a system of essentially localized chiral electron states. We find that the electrons near some minima of the effective potential are responsible for occurrence of dissipationless persistent currents creating a lattice of current contours. The topological properties of the electron energy bands are also varied with the intensity of periodic field. We calculated the topological Chern numbers of several lower energy bands as a function of the field. The corresponding Hall conductivity is nonzero and, when the Fermi level lies in the gap, it is quantized.
We use the Hirsch-Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin-orbit coupling. We calculate the spin susceptibility for various values of spin-orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin-orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin-orbit coupling. These results demonstrate that, for single impurity problem in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا