ترغب بنشر مسار تعليمي؟ اضغط هنا

T-shaped spin filter with a ring resonator

77   0   0.0 ( 0 )
 نشر من قبل Andrey Kiselev
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A planar ballistic structure is predicted to be highly effective in filtering electron spin from an unpolarized source into two output fluxes with the opposite and practically pure spin polarizations. The operability of the proposed device relies on the peculiar spin-dependent transmission properties of the T-shaped connector in the presence of the Rashba spin-orbit interaction as well as the difference in the dynamic phase gains of the two alternative paths around the ring resonator through upper and lower branches for even and odd eigenmodes.



قيم البحث

اقرأ أيضاً

192 - JunYan Luo , HuJun Jiao , Jing Hu 2015
We propose to continuously monitor a charge qubit by utilizing a T-shaped double quantum dot detector, in which the qubit and double dot are arranged in such a unique way that the detector turns out to be particularly susceptible to the charge states of the qubit. Special attention is paid to the regime where acquisition of qubit information and backaction upon the measured system exhibit nontrivial correlation. The intrinsic dynamics of the qubit gives rise to dynamical blockade of tunneling events through the detector, resulting in a super-Poissonian noise. However, such a pronounced enhancement of detectors shot noise does not necessarily produce a rising dephasing rate. In contrast, an inhibition of dephasing is entailed by the reduction of information acquisition in the dynamically blockaded regimes. We further reveal the important impact of the charge fluctuations on the measurement characteristics. Noticeably, under the condition of symmetric junction capacitances the noise pedestal of circuit current is completely suppressed, leading to a divergent signal-to-noise ratio, and eventually to a violation of the Korotkov-Averin bound in quantum measurement. Our study offers the possibility for a double dot detector to reach the quantum limited effectiveness in a transparent manner.
139 - K. P. Wojcik , I. Weymann 2014
We study the spin-resolved transport properties of T-shaped double quantum dots coupled to ferromagnetic leads. Using the numerical renormalization group method, we calculate the linear conductance and the spin polarization of the current for various model parameters and at different temperatures. We show that an effective exchange field due to the presence of ferromagnets results in different conditions for Fano destructive interference in each spin channel. This spin dependence of the Fano effect leads to perfect spin polarization, the sign of which can be changed by tuning the dots levels. Large spin polarization occurs due to Coulomb correlations in the dot, which is not directly coupled to the leads, while finite correlations in the directly-coupled dot can further enhance this effect. Moreover, we complement accurate numerical results with a simple qualitative explanation based on analytical expressions for the zero-temperature conductance. The proposed device provides a prospective example of an electrically-controlled, fully spin-polarized current source, which operates without an external magnetic field.
We report the results of molecular dynamics simulation of a spatiotemporal evolution of the locally photoexcited electrons and holes localized in two separate layers. It is shown that the ring-shaped spatial pattern of luminescence forms due to the s trong in-layer Coulomb interaction at high photoexcitation power. In addition, the results predict (i) stationary spatial oscillations of the electron density in quasi one-dimensional case and (ii) dynamical phase transition in the expansion of two-dimensional electron cloud when threshold electron concentration is reached. A possible reason of the oscillations and a theoretical interpretation of the transition are suggested.
Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The top ology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.
241 - I. Tifrea , G. Pal , 2011
We developed a set of equations to calculate the electronic Greens functions in a T-shaped multi-quantum dot system using the equation of motion method. We model the system using a generalized Anderson Hamiltonian which accounts for {em finite} intra dot on-site Coulomb interaction in all component dots as well as for the interdot electron tunneling between adjacent quantum dots. Our results are obtained within and beyond the Hartree-Fock approximation and provide a path to evaluate all the electronic correlations in the multi-quantum dot system in the Coulomb blockade regime. Both approximations provide information on the physical effects related to the finite intradot on-site Coulomb interaction. As a particular example for our generalized results, we considered the simplest T-shaped system consisting of two dots and proved that our approximation introduces important corrections in the detector and side dots Greens functions, and implicitly in the evaluation of the systems transport properties. The multi-quantum dot T-shaped setup may be of interest for the practical realization of qubit states in quantum dots systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا