ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Standard Map with Spatio-Temporal Asymmetry

64   0   0.0 ( 0 )
 نشر من قبل Taksu Cheon
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the transport properties of a set of symmetry-breaking extensions %, both spatial and temporal, of the Chirikov--Taylor Map. The spatial and temporal asymmetries result in the loss of periodicity in momentum direction in the phase space dynamics, enabling the asymmetric diffusion which is the origin of the unidirectional motion. The simplicity of the model makes the calculation of the global dynamical properties of the system feasible both in phase space and in controlling-parameter space. We present the results of numerical experiments which show the intricate dependence of the asymmetric diffusion to the controlling parameters.



قيم البحث

اقرأ أيضاً

The standard map, paradigmatic conservative system in the $(x,p)$ phase space, has been recently shown to exhibit interesting statistical behaviors directly related to the value of the standard map parameter $K$. A detailed numerical description is a chieved in the present paper. More precisely, for large values of $K$, the Lyapunov exponents are neatly positive over virtually the entire phase space, and, consistently with Boltzmann-Gibbs (BG) statistics, we verify $q_{text{ent}}=q_{text{sen}}=q_{text{stat}}=q_{text{rel}}=1$, where $q_{text{ent}}$ is the $q$-index for which the nonadditive entropy $S_q equiv k frac{1-sum_{i=1}^W p_i^q}{q-1}$ (with $S_1=S_{BG} equiv -ksum_{i=1}^W p_i ln p_i$) grows linearly with time before achieving its $W$-dependent saturation value; $q_{text{sen}}$ characterizes the time increase of the sensitivity $xi$ to the initial conditions, i.e., $xi sim e_{q_{text{sen}}}^{lambda_{q_{text{sen}}} ,t};(lambda_{q_{text{sen}}}>0)$, where $e_q^z equiv[1+(1-q)z]^{1/(1-q)}$; $q_{text{stat}}$ is the index associated with the $q_{text{stat}}$-Gaussian distribution of the time average of successive iterations of the $x$-coordinate; finally, $q_{text{rel}}$ characterizes the $q_{text{rel}}$-exponential relaxation with time of the entropy $S_{q_{text{ent}}}$ towards its saturation value. In remarkable contrast, for small values of $K$, the Lyapunov exponents are virtually zero over the entire phase space, and, consistently with $q$-statistics, we verify $q_{text{ent}}=q_{text{sen}}=0$, $q_{text{stat}} simeq 1.935$, and $q_{text{rel}} simeq1.4$. The situation corresponding to intermediate values of $K$, where both stable orbits and a chaotic sea are present, is discussed as well. The present results transparently illustrate when BG or $q$-statistical behavior are observed.
The dynamical response of Coulomb-interacting particles in nano-clusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap-symmetry, both the spatial and temporal correlations undergo s low, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Our results indicate that the distinction between the `solid and `liquid is soft: While particles in a `solid flow producing dynamic heterogeneities, motion in `liquid yields unusually long tail in the distribution of particle-displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
We investigate the time evolution of the entropy for a paradigmatic conservative dynamical system, the standard map, for different values of its controlling parameter $a$. When the phase space is sufficiently ``chaotic (i.e., for large $|a|$), we rep roduce previous results. For small values of $|a|$, when the phase space becomes an intricate structure with the coexistence of chaotic and regular regions, an anomalous regime emerges. We characterize this anomalous regime with the generalized nonextensive entropy, and we observe that for values of $a$ approaching zero, it lasts for an increasingly large time. This scenario displays a striking analogy with recent observations made in isolated classical long-range $N$-body Hamiltonians, where, for a large class of initial conditions, a metastable state (whose duration diverges with $1/Nto 0$) is observed before it crosses over to the usual, Boltzmann-Gibbs regime.
To make progress in understanding the issue of memory loss and history dependence in evolving complex systems, we consider the mixing rate that specifies how fast the future states become independent of the initial condition. We propose a simple meas ure for assessing the mixing rate that can be directly applied to experimental data observed in any metric space $X$. For a compact phase space $X subset R^M$, we prove the following statement. If the underlying dynamical system has a unique physical measure and its dynamics is strongly mixing with respect to this measure, then our method provides an upper bound of the mixing rate. We employ our method to analyze memory loss for the system of slowly sheared granular particles with a small inertial number $I$. The shear is induced by the moving walls as well as by the linear motion of the support surface that ensures approximately linear shear throughout the sample. We show that even if $I$ is kept fixed, the rate of memory loss (considered at the time scale given by the inverse shear rate) depends erratically on the shear rate. Our study suggests a presence of bifurcations at which the rate of memory loss increases with the shear rate while it decreases away from these points. We also find that the memory loss is not a smooth process. Its rate is closely related to frequency of the sudden transitions of the force network. The loss of memory, quantified by observing evolution of force networks, is found to be correlated with the loss of correlation of shear stress measured on the system scale. Thus, we have established a direct link between the evolution of force networks and macroscopic properties of the considered system.
As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) standard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا