ﻻ يوجد ملخص باللغة العربية
We report drag measurements on dilute double layer two-dimensional hole systems in the regime of r_s=19~39. We observed a strong enhancement of the drag over the simple Boltzmann calculations of Coulomb interaction, and deviations from the T^2 dependence which cannot be explained by phonon-mediated, plasmon-enhanced, or disorder-related processes. We suggest that this deviation results from interaction effects in the dilute regime.
We report interlayer tunneling measurements between very dilute two-dimensional GaAs hole layers. Surprisingly, the shape and temperature-dependence of the tunneling spectrum can be explained with a Fermi liquid-based tunneling model, but the peak am
The presence of pronounced electronic correlations in one-dimensional systems strongly enhances Coulomb coupling and is expected to result in distinctive features in the Coulomb drag between them that are absent in the drag between two-dimensional sy
Rectification of microwave radiation (20-40 GHz) by a line boundary between two two-dimensional metals on a silicon surface was observed and investigated at different temperatures, in-plane magnetic fields and microwave powers. The rectified voltage
We performed in-plane magnetodrag measurements on dilute double layer two-dimensional hole systems, at in-plane magnetic fields that suppress the apparent metallic behavior, and to fields well above those required to fully spin polarize the system. W
We report frictional drag measurements between two superconducting LaAlO$_3$/SrTiO$_3$ nanowires. In these experiments, current passing through one nanowire induces a voltage across a nearby electrically isolated nanowire. The frictional drag signal