ﻻ يوجد ملخص باللغة العربية
Analytic results for the conductance of a molecular wire attached to mesoscopic tubule leads are obtained. They permit to study linear transport in presence of low dimensional leads in the whole range of parameters. In particular contact effects can be addressed in detail. By focusing on the specificity of the lead-wire contact, we show that the geometry of this hybrid system supports a mechanism of channel selection, which is a distinctive hallmark of the mesoscopic nature of the electrodes.
The influence of contacts on linear transport through a molecular wire attached to mesoscopic tubule leads is studied. It is shown that low dimensional leads, such as carbon nanotubes, in contrast to bulky electrodes, strongly affect transport proper
We discuss the conductance of a molecular bridge between mesoscopic electrodes supporting low-dimensional transport and bearing an internal structure. As an example for such nanoelectrodes we assume semi-infinite (carbon) nanotubes. In the Landauer s
We report a first principles analysis of electronic transport characteristics for (n,n) carbon nanotube bundles. When n is not a multiple of 3, inter-tube coupling causes universal conductance suppression near Fermi level regardless of the rotational
A scanning tunnelling microscope is used to pull a polythiophene wire from a Au(111) surface while measuring the current traversing the junction. Abrupt current increases measured during the lifting procedure are associated to the detachment of molec
We study the transient phenomena appearing in a subgap region of the double quantum dot coupled in series between the superconducting and normal metallic leads, focusing on the development of the superconducting proximity effect. For the uncorrelated