ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of second-order transverse magnetic anisotropy in Mn12-acetate

106   0   0.0 ( 0 )
 نشر من قبل Roberta Sessoli
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of the role of transverse fields in Mn12-acetate, a molecular nanomagnet, is still open. We present structural evidences that the disorder of the acetic acid of crystallization indices sizeable distortion of the Mn(III) sites, giving rise to six different isomers, four of them with symmetry lower than tetragonal. Using a ligand field approach the effect of the structure modifications on the second order transverse magnetic anisotropy, forbidden in tetragonal symmetry, has been evaluated. The order of magnitude of the quadratic transverse anisotropies well agree with the values derived by the analysis of the field sweep dependence of the hysteresis loops performed by Mertes et al. (Phys. Rev. Lett 87, 227205 (2001)) and allows to better simulate the EPR spectra.



قيم البحث

اقرأ أيضاً

For the first time, the morphology and dynamics of spin avalanches in Mn12-Acetate crystals using magneto-optical imaging has been explored. We observe an inhomogeneous relaxation of the magnetization, the spins reversing first at one edge of the cry stal and a few milliseconds later at the other end. Our data fit well with the theory of magnetic deflagration, demonstrating that very slow deflagration rates can be obtained, which makes new types of experiments possible.
The magnetic properties of metal-organic complexes are strongly influenced by conformational changes in the ligand. The flexibility of Fe-tetra-pyridyl-porphyrin molecules leads to different adsorption configurations on a Au(111) surface. By combinin g low-temperature scanning tunneling spectroscopy and atomic force microscopy, we resolve a correlation of the molecular configuration with different spin states and magnitudes of magnetic anisotropy. When the macrocycle exhibits a laterally-undistorted saddle shape, the molecules lie in a S=1 state with axial anisotropy arising from a square-planar ligand field. If the symmetry in the molecular ligand field is reduced by a lateral distortion of the molecule, we find a finite contribution of transverse anisotropy. Some of the distorted molecules lie in a S=2 state, again exhibiting substantial transverse anisotropy.
Magnetoresistance loops under in-plane applied field were measured on perpendicularly magnetized magnetic tunnel junction (pMTJ) pillars with nominal diameters ranging from 50 to 150 nm. By fitting the hard-axis magnetoresistance loops to an analytic al model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340K and 5K were determined. It is found that an accurate fitting is possible only if a second-order anisotropy term of the form $-K_{2}cos^4{theta}$, is added to the fitting model. This higher order contribution exists both in the free and reference layers and its sign is opposite to that of the first order anisotropy constant, $K_{1}$. At room temperatures the estimated $-K_{2}/K_{1}$ ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures altering the ground state of the reference layer from easy-axis to easy-cone regime. Easy-cone state has clear signatures in the shape of the hard-axis magnetoresistance loops. The same behavior was observed in all measured devices regardless of their diameter. The existence of this higher order anisotropy was confirmed experimentally on FeCoB/MgO sheet films by ferromagnetic resonance technique. It is of interfacial nature and is believed to be linked to spatial fluctuations at the nanoscale of the anisotropy parameter at the FeCoB/MgO interface, in agreement with Dieny-Vedyayev model.
Using micron-sized thermometers and Hall bars, we report time-resolved studies of the local temperature and local magnetization for two types of magnetic avalanches (abrupt spin reversals) in the molecular magneti Mn12-acetate, corresponding to avala nches of the main slow-relaxing crystalline form and avalanches of the fast-relaxing minor species that exists in all as-grown crystals of this material. An experimental protocol is used that allows the study of each type of avalanche without triggering avalanches in the other, and of both types of avalanches simultaneously. In samples prepared magnetically to enable both types of avalanches, minor species avalanches are found to act as a catalyst for the major species avalanches. magnetically to enable both types of avalanches, minor species avalanches are found to act as a catalyst for the major species avalanches.
High-Sensitivity Electron Paramagnetic Resonance experiments have been carried out in fresh and stressed Mn12-Acetate single crystals for frequencies ranging from 40 GHz up to 110 GHz. The high number of crystal dislocations formed in the stressing p rocess introduces a E(S_x^2-S_y^2) transverse anisotropy term in the spin hamiltonian. From the behaviour of the resonant absorptions on the applied transverse magnetic field we have obtained an average value for E = 22 mK, corresponding to a concentration of dislocations per unit cell of c = 10^-3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا