ﻻ يوجد ملخص باللغة العربية
We relate the frequency of the scissors mode to the moment of inertia of a trapped Bose gas at finite temperature in a semi-classical approximation. We apply these theoretical results to the data obtained in our previous study of the properties of the scissors mode of a trapped Bose-Einstein condensate of $^{87}$Rb atoms as a function of the temperature. The frequency shifts that we measured show quenching of the moment of inertia of the Bose gas at temperatures below the transition temperature - the system has a lower moment of inertia that of a rigid body with the same mass distribution, because of superfluidity.
A scissors mode of a rotating Bose-Einstein condensate is investigated both theoretically and experimentally. The condensate is confined in an axi-symmetric harmonic trap, superimposed with a small rotating deformation. For angular velocities larger
We report the first experimental observation of Beliaev damping of a collective excitation in a Bose-condensed gas. Beliaev damping is not predicted by the Gross-Pitaevskii equation and so this is one of the few experiments that tests BEC theory beyo
In terms of linearized Gross-Pitaevskii equation we have studied the process of sound emission arises from a supersonic particle motion in a Bose-condensed gas. By analogy with the method used for description of Vavilov-Cherenkov phenomenon, we have
The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored
In experiments involving Bose condensed atoms trapped in magnetic bottles, plugging the hole in the bottle potential with a LASER beam produces a new potential with two minima, and thus a condensate order parameter (i.e. wave function) with two maxim