Self- generated disorder and structural glass formation in homopolymer globules


الملخص بالإنكليزية

We have investigated the interrelation between the spin glasses and the structural glasses. Spin glasses in this case are random magnets without reflection symmetry (e.g. $p$ - spin interaction spin glasses and Potts glasses) which contain quenched disorder, whereas the structural glasses are here exemplified by the homopolymeric globule, which can be viewed as a liquid of connected molecules on nano scales. It is argued that the homopolymeric globule problem can be mapped onto a disorder field theoretical model whose effective Hamiltonian resembles the corresponding one for the spin glass model. In this sense the disorder in the globule is self - generated (in contrast to spin glasses) and can be related with competitive interactions (virial coefficients of different signs) and the chain connectivity. The work is aimed at giving a quantitative description of this analogy. We have investigated the phase diagram of the homopolymeric globule where the transition line from the liquid to glassy globule is treated in terms of the replica symmetry breaking paradigm. The configurational entropy temperature dependence is also discussed.

تحميل البحث