ﻻ يوجد ملخص باللغة العربية
Single crystals of the layered organic type II superconductor, $kappa$-(BEDT-TTF)$_{2}$Cu(NCS)$_{2}$, have been studied in magnetic fields of up to 33 T and at temperatures between 0.5 K and 11 K using a compact differential susceptometer. When the magnetic field lies precisely in the quasi-two-dimensional planes of the material, there is strong evidence for a phase transition from the superconducting mixed state into a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, manisfested as a change in the rigidity of the vortex system. The behaviour of the transition as a function of temperature is in good agreement with theoretical predictions.
The specific heat of the layered organic superconductor $kappa$-% (BEDT-TTF)$_2$Cu(NCS)$_2$, where BEDT-TTF is bisethylenedithio-% tetrathiafulvalene, has been studied in magnetic fields up to 28 T applied perpendicular and parallel to the supercondu
We consider a two-component Fermi gas in the presence of spin imbalance, modeling the system in terms of a one-dimensional attractive Hubbard Hamiltonian initially in the presence of a confining trap potential. With the aid of the time-evolving block
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T
Nuclear magnetic resonance measurements were performed on CeCu$_{2}$Si$_{2}$ in the presence of a magnetic field close to the upper critical field $mu_{0} H_{rm c2}$ in order to investigate its superconducting (SC) properties near pair-breaking field
The density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, measured by scanning tunneling spectroscopy on textit{in-situ} cleaved surfaces, reveals a logarithmic suppression near the Fermi edge persisting above the cri